论文标题

ELSR:移动设备的极端低功率超级分辨率网络

ELSR: Extreme Low-Power Super Resolution Network For Mobile Devices

论文作者

Xu, Tianyu, Jia, Zhuang, Zhang, Yijian, Bao, Long, Sun, Heng

论文摘要

随着移动设备的普及,例如智能手机和可穿戴设备,更轻,更快的型号对于应用视频超级分辨率至关重要。但是,大多数以前的轻型模型倾向于降低台式GPU模型推断的范围,这在当前的移动设备中可能不会节能。在本文中,我们提出了极端低功率超级分辨率(ELSR)网络,该网络仅在移动设备中消耗少量能量。采用预训练和填充方法来提高极小模型的性能。广泛的实验表明,我们的方法在恢复质量和功耗之间取得了良好的平衡。最后,我们在目标总经理Dimenty 9000 PlantForm上以PSNR 27.34 dB和功率为0.09 W/30fps的PSNR分数为90.9,在移动AI&AIM 2022实时视频超级分辨率挑战中排名第一。

With the popularity of mobile devices, e.g., smartphone and wearable devices, lighter and faster model is crucial for the application of video super resolution. However, most previous lightweight models tend to concentrate on reducing lantency of model inference on desktop GPU, which may be not energy efficient in current mobile devices. In this paper, we proposed Extreme Low-Power Super Resolution (ELSR) network which only consumes a small amount of energy in mobile devices. Pretraining and finetuning methods are applied to boost the performance of the extremely tiny model. Extensive experiments show that our method achieves a excellent balance between restoration quality and power consumption. Finally, we achieve a competitive score of 90.9 with PSNR 27.34 dB and power 0.09 W/30FPS on the target MediaTek Dimensity 9000 plantform, ranking 1st place in the Mobile AI & AIM 2022 Real-Time Video Super-Resolution Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源