论文标题
群集代数的超支区域
Superunitary regions of cluster algebras
论文作者
论文摘要
本说明介绍了集群代数的超支区域,该区域是每个集群变量至少为1的完全积极区域的子空间。我们的主要结果是,有限型群集群集代数的超支区域是常规的CW综合体,它是群集Algebra的广义相关的同型。作为一种应用,超单位区域的紧凑性意味着每个Dynkin图都承认了有限的许多积极整体式饰面。
This note introduces the superunitary region of a cluster algebra, the subspace of the totally positive region on which each cluster variable is at least 1. Our main result is that the superunitary region of a finite type cluster algebra is a regular CW complex which is homeomorphic to the generalized associahedron of the cluster algebra. As an application, the compactness of the superunitary region implies that each Dynkin diagram admits finitely many positive integral friezes.