论文标题

具有随机热力学的非线性介绍系统中波动的边界差异和偏度

Bounding Variance and Skewness of Fluctuations in Nonlinear Mesoscopic Systems with Stochastic Thermodynamics

论文作者

Delvenne, Jean-Charles, Van Brandt, Léopold

论文摘要

在非线性耗散系统(二极管,晶体管,化学反应等)中产生的波动众所周知,众所周知,众所周知,众所周知,在特定环境中,众所周知,诸如波动降低定理(也称为Johnson-nyquist Law或Einstein的法律)。利用随机热力学的结果,我们表明这些波动的方差超过了约翰逊 - 尼奎斯特公式的适当扩展版本所预测的差异,这是由波动的偏度(第三刻)控制的数量。结果,对称波动必然遵守扩展的约翰逊 - 尼奎斯特公式。这显示了在某些非线性模型(例如MOS晶体管或化学反应)中产生的高斯近似值的物理不一致。更普遍地,这表明需要与热力学教学兼容的随机非线性系统理论。

Fluctuations arising in nonlinear dissipative systems (diode, transistors, chemical reaction, etc.) subject to an external drive (voltage, chemical potential, etc.) are well known to elude any simple characterization such as the fluctuation-dissipation theorem (also called Johnson-Nyquist law, or Einstein's law in specific contexts). Using results from stochastic thermodynamics, we show that the variance of these fluctuations exceeds the variance predicted by a suitably extended version of Johnson-Nyquist's formula, by an amount that is controlled by the skewness (third moment) of the fluctuations. As a consequence, symmetric fluctuations necessarily obey the extended Johnson-Nyquist formula. This shows the physical inconsistency of Gaussian approximation for the noise arising in some nonlinear models, such as MOS transistors or chemical reactions. More generally, this suggests the need for a stochastic nonlinear systems theory that is compatible with the teachings of thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源