论文标题

改进了非单词酮次管的确定性算法

Improved Deterministic Algorithms for Non-monotone Submodular Maximization

论文作者

Sun, Xiaoming, Zhang, Jialin, Zhang, Shuo, Zhang, Zhijie

论文摘要

supporular最大化是组合优化的核心主题之一。它在现实世界中发现了许多应用。在过去的几十年中,为此问题提出了一系列算法。但是,大多数最新算法都是随机的。相对于确定性和随机算法之间的近似值,在下最大化中仍然存在不可忽略的差距。 在本文中,我们提出了确定性算法,具有提高的非单调性最大化近似值的近似值。具体而言,对于Matroid约束,我们提供了确定性的$ 0.283-O(1)$近似算法,而先前的最佳确定性算法仅达到$ 1/4 $ $近似值。对于背包约束,我们提供确定性的$ 1/4 $近似算法,而以前的最佳确定性算法仅达到$ 1/6 $近似值。对于具有较大宽度的线性包装约束,我们提供确定性的$ 1/6-ε$近似算法。据我们所知,目前尚无确定性近似算法的约束算法。

Submodular maximization is one of the central topics in combinatorial optimization. It has found numerous applications in the real world. In the past decades, a series of algorithms have been proposed for this problem. However, most of the state-of-the-art algorithms are randomized. There remain non-negligible gaps with respect to approximation ratios between deterministic and randomized algorithms in submodular maximization. In this paper, we propose deterministic algorithms with improved approximation ratios for non-monotone submodular maximization. Specifically, for the matroid constraint, we provide a deterministic $0.283-o(1)$ approximation algorithm, while the previous best deterministic algorithm only achieves a $1/4$ approximation ratio. For the knapsack constraint, we provide a deterministic $1/4$ approximation algorithm, while the previous best deterministic algorithm only achieves a $1/6$ approximation ratio. For the linear packing constraints with large widths, we provide a deterministic $1/6-ε$ approximation algorithm. To the best of our knowledge, there is currently no deterministic approximation algorithm for the constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源