论文标题

提取领域之间的关系

Extracting Relations Between Sectors

论文作者

Kara, Atakan, Daniş, F. Serhan, Orman, Günce Keziban, Turhan, Sultan Nezihe

论文摘要

专业商业生活中的“行业”一词是一个模糊的概念,因为公司倾向于同时将自己识别为在多个领域的运作。这种歧义在向求职者推荐工作或为公开职位寻找合适的候选人时会带来问题。当特定部门的可用候选人也很少时,后者具有重要的重视;因此,从类似部门找到候选人至关重要。这项工作着重于通过关系分析发现可能的部门相似性。我们使用频繁的模式挖掘和协作过滤域中采用了几种算法,即基于Pearson的相关性,Kendall和Spearman的等级相关系数,即Negfin,Negfin,交替的最小二乘,双边变异自动编码器和协作过滤。在土耳其一家大型招聘公司Kariyer.net提供的现实世界数据集上比较了这些算法。预计通过这项工作获得的见解和方法将提高各种方法的效率和准确性,例如建议工作或寻找合适的候选人进行开放位置。

The term "sector" in professional business life is a vague concept since companies tend to identify themselves as operating in multiple sectors simultaneously. This ambiguity poses problems in recommending jobs to job seekers or finding suitable candidates for open positions. The latter holds significant importance when available candidates in a specific sector are also scarce; hence, finding candidates from similar sectors becomes crucial. This work focuses on discovering possible sector similarities through relational analysis. We employ several algorithms from the frequent pattern mining and collaborative filtering domains, namely negFIN, Alternating Least Squares, Bilateral Variational Autoencoder, and Collaborative Filtering based on Pearson's Correlation, Kendall and Spearman's Rank Correlation coefficients. The algorithms are compared on a real-world dataset supplied by a major recruitment company, Kariyer.net, from Turkey. The insights and methods gained through this work are expected to increase the efficiency and accuracy of various methods, such as recommending jobs or finding suitable candidates for open positions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源