论文标题

大量铝制位错结构的大量映射

Extensive 3D Mapping of Dislocation Structures in Bulk Aluminum

论文作者

Yildirim, Can, Poulsen, Henning F., Winther, Grethe, Detlefs, Carsten, Huang, Pin H., Dresselhaus-Marais, Leora E.

论文摘要

热机械加工(例如退火)是量身定制材料机械性能的主要方法之一,但是,对于宏观晶体内部深处的脱位结构的重组,这引起了这些变化,这是未知的。在这里,我们证明了在铝的MM大小单晶体中高温退火时脱位结构的自组织。 We map a large embedded 3D volume ($100\times300\times300$ $μ$m$^3$) of dislocation structures using dark field x-ray microscopy (DFXM), a diffraction-based imaging technique.在广泛的视野上,DFXM的高角度分辨率使我们能够识别由位错边界隔开的子晶粒,我们使用计算机视觉方法识别并将其识别为单位脱位级别。我们证明了如何在高温下长时间退火后,剩余的低脱位密度仍然包含在特定晶体学平面上的明确定义的直脱位边界(DB)中。与常规的谷物生长模型相反,我们的结果表明,三个连接处的二面角不是预测的120 $ \度$,这表明边界稳定机制中的额外复杂性。在这些边界周围绘制局部不良方向和晶格应变表明,观察到的应变是剪切的,在$ \ $ \ of $ \ of 0.003-0.006 \ guger {} $周围的平均不良方向{}

Thermomechanical processing such as annealing is one of the main methods to tailor the mechanical properties of materials, however, much is unknown about the reorganization of dislocation structures deep inside macroscopic crystals that give rise to those changes. Here, we demonstrate the self-organization of dislocation structures upon high-temperature annealing in a mm-sized single crystal of aluminum. We map a large embedded 3D volume ($100\times300\times300$ $μ$m$^3$) of dislocation structures using dark field x-ray microscopy (DFXM), a diffraction-based imaging technique. Over the wide field of view, DFXM's high angular resolution allows us to identify subgrains, separated by dislocation boundaries, which we identify and characterize down to the single-dislocation level using computer-vision methods. We demonstrate how even after long annealing times at high temperatures, the remaining low density of dislocations still pack into well-defined, straight dislocation boundaries (DBs) that lie on specific crystallographic planes. In contrast to conventional grain growth models, our results show that the dihedral angles at the triple junctions are not the predicted 120$\degree$, suggesting additional complexities in the boundary stabilization mechanisms. Mapping the local misorientation and lattice strain around these boundaries shows that the observed strain is shear, imparting an average misorientation around the DB of $\approx 0.003-0.006 \degree{}$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源