论文标题
Cluda:语义分割的无监督域适应性的对比度学习
CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for Semantic Segmentation
论文作者
论文摘要
在这项工作中,我们提出了Cluda,这是一种简单而新颖的方法,用于通过将对比损失纳入学生教师学习范式中,以进行无监督的域适应性(UDA)进行语义分割,以利用教师网络从目标领域中产生的伪标记。更具体地说,我们从编码器中提取多级融合功能图,并通过图像的源目标混合使用不同类别和不同域的对比度损失。我们始终在语义分割中不断提高各种特征编码器体系结构和不同域适应数据集的性能。此外,我们引入了一种学习的加权对比损失,以改善UDA最先进的多分辨率训练方法。我们在gta $ \ rightarrow $ cityScapes(74.4 miou,+0.6)和Synthia $ \ rightarrow $ cityScapes(67.2 miou,+1.4)数据集上产生最先进的结果。 Cluda有效地证明了UDA中的对比学习作为通用方法,可以轻松地将其集成到任何现有的UDA中以进行语义分割任务。有关实施的详细信息,请参考补充材料。
In this work, we propose CLUDA, a simple, yet novel method for performing unsupervised domain adaptation (UDA) for semantic segmentation by incorporating contrastive losses into a student-teacher learning paradigm, that makes use of pseudo-labels generated from the target domain by the teacher network. More specifically, we extract a multi-level fused-feature map from the encoder, and apply contrastive loss across different classes and different domains, via source-target mixing of images. We consistently improve performance on various feature encoder architectures and for different domain adaptation datasets in semantic segmentation. Furthermore, we introduce a learned-weighted contrastive loss to improve upon on a state-of-the-art multi-resolution training approach in UDA. We produce state-of-the-art results on GTA $\rightarrow$ Cityscapes (74.4 mIOU, +0.6) and Synthia $\rightarrow$ Cityscapes (67.2 mIOU, +1.4) datasets. CLUDA effectively demonstrates contrastive learning in UDA as a generic method, which can be easily integrated into any existing UDA for semantic segmentation tasks. Please refer to the supplementary material for the details on implementation.