论文标题

路径复合物中的最小路径和无环模型

Minimal Path and Acyclic Models in the Path Complex

论文作者

Tang, Xinxing, Yau, Shing-Tung

论文摘要

在本文中,首先,我们将通过$ \ z $ g $的路径复合物$(ω_*(g; \ z),\ partial)$通过$ \ z $ g $的$ \ z $ - $ω_*(g,\ z)$的$ g $的结构,在\ cite \ cite {hy}中被称为最小路径。特别是,我们将研究最低$ 3 $ Paths的各种示例。其次,我们将证明最小路径的支撑子传输具有无环路同源性。第三,我们将考虑这种无环模型的应用。

In this paper, firstly, we will study the structure of the path complex $(Ω_*(G;\Z),\partial)$ of a digraph $G$ via the $\Z$-generators of $Ω_*(G,\Z)$ under strongly regular condition, which is called the minimal path in \cite{HY}. In particular, we will study various examples of the minimal $3$-paths. Secondly, we will show that the supporting sub-digraph of minimal path has acyclic path homologies. Thirdly, we will consider the applications of such an acyclic model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源