论文标题

图像分类通过在张量网络上扔量子厨房水槽

Image Classification by Throwing Quantum Kitchen Sinks at Tensor Networks

论文作者

Kodama, Nathan X., Bocharov, Alex, da Silva, Marcus P.

论文摘要

近年来,已经提出了几种用于机器学习的变异量子电路方法,其中一类有希望的变分算法涉及局部特征图导致的状态运行的张量网络。相比之下,一种称为量子厨房水槽的随机特征方法可提供可比的性能,但利用非本地特征图。在这里,我们通过提出一种新的电路Ansatz结合了这两种方法,其中树张量网络相干地处理了量子厨房水槽的非本地特征图,并且我们运行数值实验,以经验评估新的ANSATZ在图像分类中的性能。从分类性能的角度来看,我们发现仅将量子厨房水槽与张量网络结合在一起不会产生定性的改进。但是,添加功能优化大大提高了性能,从而导致用于图像分类的最新量子电路,仅需要浅电路和少量Qubits - 都很好地达到了近期量子设备的范围。

Several variational quantum circuit approaches to machine learning have been proposed in recent years, with one promising class of variational algorithms involving tensor networks operating on states resulting from local feature maps. In contrast, a random feature approach known as quantum kitchen sinks provides comparable performance, but leverages non-local feature maps. Here we combine these two approaches by proposing a new circuit ansatz where a tree tensor network coherently processes the non-local feature maps of quantum kitchen sinks, and we run numerical experiments to empirically evaluate the performance of the new ansatz on image classification. From the perspective of classification performance, we find that simply combining quantum kitchen sinks with tensor networks yields no qualitative improvements. However, the addition of feature optimization greatly boosts performance, leading to state-of-the-art quantum circuits for image classification, requiring only shallow circuits and a small number of qubits -- both well within reach of near-term quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源