论文标题
孤立的大肠杆菌鞭毛的微观运动
Microscopic motility of isolated E. coli flagella
论文作者
论文摘要
波动驱动定理描述了热颗粒的布朗扩散与其阻力系数之间的紧密联系。在球形颗粒的简单情况下,它采用了stokes-inenstein关系的形式,该关系将粒子几何形状,流体粘度和扩散行为联系起来。但是,研究微观不对称颗粒的基本特性,例如$ \ textit {e使用的螺旋形螺旋桨。大肠杆菌} $,由于需要与足够的空间和时间分辨率同时量化相关的翻译和旋转,因此无法实现实验方法。为了解决这个杰出的问题,我们生成了荧光团标签,自由扩散,孤立的$ \ textit {e的体积电影。大肠杆菌} $鞭毛使用倾斜平面显微镜。从这些电影中,我们提取了轨迹,并通过广义的爱因斯坦关系直接从鞭毛的扩散中确定了流体动力推进基质。我们的结果基于宏观线螺旋螺旋和低雷诺数缩放定律的先前建议,即平均鞭毛是一个高效效率的螺旋桨。具体而言,我们发现鞭毛的最大推进效率小于5%。除了将布朗运动分析扩展到非对称3D颗粒外,我们的方法还开辟了新的途径,以研究直接流体动力学方法不可行的复杂环境中颗粒的推进基质。
The fluctuation-dissipation theorem describes the intimate connection between the Brownian diffusion of thermal particles and their drag coefficients. In the simple case of spherical particles, it takes the form of the Stokes-Einstein relationship that links the particle geometry, fluid viscosity, and diffusive behavior. However, studying the fundamental properties of microscopic asymmetric particles, such as the helical-shaped propeller used by $\textit{E. coli}$, has remained out of reach for experimental approaches due to the need to quantify correlated translation and rotation simultaneously with sufficient spatial and temporal resolution. To solve this outstanding problem, we generated volumetric movies of fluorophore-labeled, freely diffusing, isolated $\textit{E. Coli}$ flagella using oblique plane microscopy. From these movies, we extracted trajectories and determined the hydrodynamic propulsion matrix directly from the diffusion of flagella via a generalized Einstein relation. Our results validate prior proposals, based on macroscopic wire helices and low Reynolds number scaling laws, that the average flagellum is a highly inefficient propeller. Specifically, we found the maximum propulsion efficiency of flagella is less than 5%. Beyond extending Brownian motion analysis to asymmetric 3D particles, our approach opens new avenues to study the propulsion matrix of particles in complex environments where direct hydrodynamic approaches are not feasible.