论文标题

合成潜在指纹生成器

Synthetic Latent Fingerprint Generator

论文作者

Wyzykowski, Andre Brasil Vieira, Jain, Anil K.

论文摘要

鉴于完整的指纹图像(滚动或拍打),我们提出了Cyclegan模型,以产生与完整印刷相同身份的多个潜在印象。我们的模型可以控制生成的潜在印刷图像中的失真,噪声,模糊和遮挡程度,以获得NIST SD27潜在数据库中介绍的好,坏和丑陋的潜在图像类别。 The contributions of our work are twofold: (i) demonstrate the similarity of synthetically generated latent fingerprint images to crime scene latents in NIST SD27 and MSP databases as evaluated by the NIST NFIQ 2 quality measure and ROC curves obtained by a SOTA fingerprint matcher, and (ii) use of synthetic latents to augment small-size latent training databases in the public domain to improve the performance of Deepprint是一种SOTA指纹匹配器,专为在三个潜在数据库(NIST SD27,NIST SD302和IIITD-SLF)上滚动指纹匹配而设计。例如,随着综合潜在数据的增强,在具有挑战性的NIST SD27潜在数据库中,Deepprint的排名1检索性能从15.50%提高到29.07%。我们生成合成潜在指纹的方法可用于改善任何潜在匹配器及其单个组件的识别性能(例如增强,分割和特征提取)。

Given a full fingerprint image (rolled or slap), we present CycleGAN models to generate multiple latent impressions of the same identity as the full print. Our models can control the degree of distortion, noise, blurriness and occlusion in the generated latent print images to obtain Good, Bad and Ugly latent image categories as introduced in the NIST SD27 latent database. The contributions of our work are twofold: (i) demonstrate the similarity of synthetically generated latent fingerprint images to crime scene latents in NIST SD27 and MSP databases as evaluated by the NIST NFIQ 2 quality measure and ROC curves obtained by a SOTA fingerprint matcher, and (ii) use of synthetic latents to augment small-size latent training databases in the public domain to improve the performance of DeepPrint, a SOTA fingerprint matcher designed for rolled to rolled fingerprint matching on three latent databases (NIST SD27, NIST SD302, and IIITD-SLF). As an example, with synthetic latent data augmentation, the Rank-1 retrieval performance of DeepPrint is improved from 15.50% to 29.07% on challenging NIST SD27 latent database. Our approach for generating synthetic latent fingerprints can be used to improve the recognition performance of any latent matcher and its individual components (e.g., enhancement, segmentation and feature extraction).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源