论文标题

可压缩拓扑矢量空间

Compressible Topological Vector Spaces

论文作者

Robaei, Mohammadreza, Akl, Robert

论文摘要

已经提出了局部凸出空间中无限二维可压缩随机过程的最佳子空间分解,并已经测量了其尺寸。我们对有限的和无限的可压缩载体空间进行拓扑分析。我们证明,如果可压缩拓扑矢量空间中有足够数量的分离点,则BANACH极限会重合最小的线性函数。然后,可压缩拓扑矢量空间的最佳正交分解可以作为最小线性功能的极限。已经表明,可分离空间(也称为最佳子空间)是包含其极端点的可压缩向量空间的子集。不可分割的子空间是通过Minkowski功能和Lebesgue测度的新型吸收无空间空间属性来表征的。我们证明吸收的无效空间是局部凸空间的连接子空间。我们目的是反身份同态,可以在信号空间和双重双空间之间建立关系。已经表明,Banach极限可以通过反射同态的左右手侧面的cauchy网的紧凑收敛来确定。最后,我们建议使用Frechet距离度量度量测量最佳子空间尺寸。为了将特定距离应用于可压缩的拓扑矢量空间,已经提出了从连续函数采样的kothe序列。简而言之,所提出的方法测量了有关Hahn-Banach和Daniell-Kolmogorov定理的有限和无限二维可压缩矢量空间的足够数量的分离点。已经提出了用于有限和无限维信号的数值分析。

The optimum subspace decomposition of the infinite-dimensional compressible random processes in the locally convex Hausdorff space has been propose and its dimension has been measured. We conduct topological analysis of finite- and infinite-dimensional compressible vector spaces. We prove that if there are a sufficient number of separating points in compressible topological vector space, the Banach Limit coincides the minimal linear functional. Then, optimum orthogonal decomposition of the compressible topological vector space can be formulated as a limit for which minimal linear functional occurs. It has been shown that the separable space, also referred to as an optimum subspace, is the subset of the compressible vector space that contains its extreme points. The inseparable subspace is characterized using a novel absorbing null space property through Minkowski functional and Lebesgue measure. We prove that the absorbing null space is a connected subspace of the locally convex space. We purpose reflexive homomorphism that establishes a relation between signal space and double dual space. It has been shown that the Banach limit can be determined by the compact convergence of the Cauchy nets on the left and right hands sides of a reflexive homomorphism. Finally, we propose to measure the optimum subspace dimension using the Frechet distance metric. To apply the Frechet distance to the compressible topological vector space, the Kothe sequence sampled from a continuous function has been proposed. Briefly, the proposed approach measures the sufficient number of separating points of the finite- and infinite-dimensional compressible vector space for the given undersampled operator with respect to Hahn-Banach and Daniell-Kolmogorov theorems. The numerical analysis have been presented for finite- and infinite-dimensional signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源