论文标题

量子电路和张量网络之间的协同作用:缩短竞争到实用量子优势

Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage

论文作者

Rudolph, Manuel S., Miller, Jacob, Motlagh, Danial, Chen, Jing, Acharya, Atithi, Perdomo-Ortiz, Alejandro

论文摘要

尽管最近的突破已经证明了嘈杂的中间量子量子(NISQ)设备在经典可提取的采样任务中获得量子优势的能力,但使用这些设备来解决更实际相关的计算问题仍然是一个挑战。获得实用量子优势的建议通常涉及参数化的量子电路(PQC),可以优化其参数以在整个量子模拟和机器学习中找到各种问题的解决方案。然而,针对现实世界问题的培训PQC仍然是一个重大的实际挑战,这主要是由于贫瘠的高原现象在随机量化量子电路的优化景观中。在这项工作中,我们介绍了一个可扩展的程序,用于利用经典计算资源来为PQC提供预先优化的初始化,我们显示的是PQC在各种问题上的训练性和性能。给定特定的优化任务,该方法首先利用张量网络(TN)模拟来识别有希望的量子状态,然后通过高性能分解过程将其转换为PQC的门参数。我们表明,这种学识渊博的初始化避免了贫瘠的高原,并有效地将经典资源的增加转化为提高训练量子电路的性能和速度。通过证明使用经典计算机增强有限量子资源的方法,我们的方法说明了量子计算中量子和量子启发的模型之间这种协同作用的希望,并开辟了新的途径,以利用现代量子硬件实现实用量子优势的现代量子硬件的力量。

While recent breakthroughs have proven the ability of noisy intermediate-scale quantum (NISQ) devices to achieve quantum advantage in classically-intractable sampling tasks, the use of these devices for solving more practically relevant computational problems remains a challenge. Proposals for attaining practical quantum advantage typically involve parametrized quantum circuits (PQCs), whose parameters can be optimized to find solutions to diverse problems throughout quantum simulation and machine learning. However, training PQCs for real-world problems remains a significant practical challenge, largely due to the phenomenon of barren plateaus in the optimization landscapes of randomly-initialized quantum circuits. In this work, we introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for PQCs, which we show significantly improves the trainability and performance of PQCs on a variety of problems. Given a specific optimization task, this method first utilizes tensor network (TN) simulations to identify a promising quantum state, which is then converted into gate parameters of a PQC by means of a high-performance decomposition procedure. We show that this learned initialization avoids barren plateaus, and effectively translates increases in classical resources to enhanced performance and speed in training quantum circuits. By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing, and opens up new avenues to harness the power of modern quantum hardware for realizing practical quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源