论文标题
部分可观测时空混沌系统的无模型预测
Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Modeling real processes often results in several suitable models. In order to be able to distinguish, or discriminate, which model best represents a phenomenon, one is interested, e.g., in so-called T-optimal designs. These consist of the (design) points from a generally continuous design space at which the models deviate most from each other, under the condition that they are best fitted to those points. Thus, the T-criterion represents a bi-level optimization problem, which can be transferred into a semi-infinite one, but whose solution is very unstable or time consuming for non-linear models and non-convex lower- and upper-level problems. If one considers only a finite number of possible design points, a numerically well tractable linear semi-infinite optimization problem arises. Since this is only an approximation of the original model discrimination problem, we propose an algorithm which alternately and adaptively refines discretizations of the parameter as well as of the design space and, thus, solves a sequence of LSIPs. We prove convergence of our method and its subroutine and show on the basis of discrimination tasks from process engineering that our approach is stable and can outperform the known methods.