论文标题

中级RICCI曲率和Gromov的Betti数字约束

Intermediate Ricci curvatures and Gromov's Betti number bound

论文作者

Reiser, Philipp, Wraith, David J.

论文摘要

我们考虑封闭的Riemannian歧管$ M^n $上的中级RICCI曲率$ ric_k $。当$ k = n-1 $和$ k = 1 $时,当$ k = n-1 $和截面曲率时,这些插值在RICCI曲率之间。通过建立$ ric_k> 0 $的Riemannian指标的手术结果,我们表明Gromov在下面界定的截面曲率的上贝蒂数字限制为$ ric_k> 0 $时,当$ ric_k> 0 $时,当$ \ lfloor n/2 \ rfloor+rfloor+2 \ le l le k \ le k \ le n-1 $。以前仅在RICCI曲率的情况下才知道这一点。

We consider intermediate Ricci curvatures $Ric_k$ on a closed Riemannian manifold $M^n$. These interpolate between the Ricci curvature when $k=n-1$ and the sectional curvature when $k=1$. By establishing a surgery result for Riemannian metrics with $Ric_k>0$, we show that Gromov's upper Betti number bound for sectional curvature bounded below fails to hold for $Ric_k>0$ when $\lfloor n/2 \rfloor+2 \le k \le n-1$. This was previously known only in the case of positive Ricci curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源