论文标题
渐进的自我依据,用于地面至意识知识转移
Progressive Self-Distillation for Ground-to-Aerial Perception Knowledge Transfer
论文作者
论文摘要
我们研究了一个实用的问题,但尚未探讨问题:无人机如何在不同飞行高度的环境中感知。与自主驾驶始终从地面观点进行感知的自主驾驶不同,由于特定的任务,飞行的无人机可能会灵活地改变其飞行高度,这需要能力才能进行视点不变的感知。通过监督学习解决此类问题将产生巨大的成本来对不同的飞行高度的数据注释。另一方面,在观点差异下,当前的半监督学习方法无效。在本文中,我们介绍了地下的感知知识转移,并提出了一个渐进的半监督学习框架,该框架仅使用地面视点的标记数据和未标记的飞行观点数据来实现无人机感知。我们的框架具有四个核心组成部分:i)一种密集的观点抽样策略,将垂直飞行高度划分为一组均匀分布间隔的小块,ii)最接近的邻居标记,以在上面的观看点上与其他观点相比,在较近的邻居观看点上,均具有不同的型号,从而在上面的观看点上产生一个差异,iii)的观看点,iii),iii),iii)的图像,iii)的图像,iii)。蒸馏策略逐渐学习,直到达到最大飞行高度为止。我们收集了一个合成的和现实世界的数据集,并进行了广泛的实验分析,以表明我们的方法可为合成的数据集和现实世界带来22.2%和16.9%的精度提高。代码和数据集可在https://github.com/freeformrobotics/progressive-self-distillation-for-ground-to-aerial-poception-peception-knowledge-transfer上找到。
We study a practical yet hasn't been explored problem: how a drone can perceive in an environment from different flight heights. Unlike autonomous driving, where the perception is always conducted from a ground viewpoint, a flying drone may flexibly change its flight height due to specific tasks, requiring the capability for viewpoint invariant perception. Tackling the such problem with supervised learning will incur tremendous costs for data annotation of different flying heights. On the other hand, current semi-supervised learning methods are not effective under viewpoint differences. In this paper, we introduce the ground-to-aerial perception knowledge transfer and propose a progressive semi-supervised learning framework that enables drone perception using only labeled data of ground viewpoint and unlabeled data of flying viewpoints. Our framework has four core components: i) a dense viewpoint sampling strategy that splits the range of vertical flight height into a set of small pieces with evenly-distributed intervals, ii) nearest neighbor pseudo-labeling that infers labels of the nearest neighbor viewpoint with a model learned on the preceding viewpoint, iii) MixView that generates augmented images among different viewpoints to alleviate viewpoint differences, and iv) a progressive distillation strategy to gradually learn until reaching the maximum flying height. We collect a synthesized and a real-world dataset, and we perform extensive experimental analyses to show that our method yields 22.2% and 16.9% accuracy improvement for the synthesized dataset and the real world. Code and datasets are available on https://github.com/FreeformRobotics/Progressive-Self-Distillation-for-Ground-to-Aerial-Perception-Knowledge-Transfer.