论文标题
全球结构和缓慢旋转积聚流的动态
Global structure and dynamics of slowly rotating accretion flows
论文作者
论文摘要
我们研究了缓慢旋转积聚的全球溶液在椭圆星系核中的超质量黑洞周围流动。黑洞周围的积聚气体的速度最初是亚音速的,然后以人的身份掉落到黑洞上,因此积聚流动必须是跨性别的。我们通过数值求解从邦迪半径到黑洞附近的方程式。我们讨论的重点将放在略微旋转积聚流的特性上,其中散发性损失被忽略了。这项研究讨论了外边界条件(外边界处的温度和特定角动量)如何影响吸积流动力学。我们研究了两个物理不连续的方案:邦迪样型积聚和类似磁盘样的积聚。当邦迪半径$ \ ell_ {b} $处的特定角动量比在边缘稳定轨道$ \ ell_ {ms} $处的特定角动量小时,就会发生类似邦迪的积聚。相比之下,当邦迪半径$ \ ell_ {b} $处的特定角动量大于边缘稳定轨道$ \ ell_ {ms} $的特定角动量时,就会发生类似磁盘的积聚。我们还保持静水平衡的假设,并将我们的结果与未考虑的情况进行比较。根据这项研究,考虑到静水平衡的假设会降低质量吸积率。此外,我们为粘度参数$α$的不同范围找到解决方案。最后,我们研究了星系电位对缓慢旋转积聚流的影响。
We study the global solutions of slowly rotating accretion flows around the supermassive black hole in the nucleus of an elliptical galaxy. The velocity of accreted gas surrounding the black hole is initially subsonic and then falls onto the black hole supersonically, so accretion flow must be transonic. We numerically solve equations from the Bondi radius to near the black hole. The focus of our discussion will be on the properties of slightly rotating accretion flows in which radiative losses have been ignored. This study discusses how outer boundary conditions (the temperature and specific angular momentum at the outer boundary) influence accretion flow dynamics. We investigate two physically discontinuous regimes: The Bondi-like type accretion and the Disk-like type accretion. A Bondi-like accretion occurs when the specific angular momentum at the Bondi radius $ \ell_{B} $ is smaller than the specific angular momentum at the marginally stable orbit $ \ell_{ms} $. In comparison, a Disk-like accretion occurs when the specific angular momentum at the Bondi radius $ \ell_{B} $ is larger than the specific angular momentum of the marginally stable orbit $ \ell_{ms} $. We also keep the assumption of hydrostatic equilibrium and compare our results with the case in which it is not considered. According to this study, considering the assumption of hydrostatic equilibrium reduces the mass accretion rate. Additionally, we find our solution for different ranges of the viscosity parameter $α$. Finally, we study the effect of galaxy potential on slowly rotating accretion flows.