论文标题
阐明了针对性的恶意下载者的受害者概况
Shedding Light on the Targeted Victim Profiles of Malicious Downloaders
论文作者
论文摘要
恶意软件会影响全球数百万用户,从而影响许多人和企业的日常生活。恶意软件感染的复杂性正在增加,并且在多个阶段展开。恶意下载器通常可以作为起点,因为它可以指纹受害者的机器并下载一个或多个其他恶意软件有效载荷。尽管先前对这些恶意下载者及其按下付费网络进行了研究,但有限的工作已经调查了受害机器的概况如何(例如,其特征和软件配置)如何影响网络犯罪分子的目标选择。 在本文中,我们通过151,189个恶意软件下载者在12个月的时间内通过151,189个执行恶意软件的执行,对机器配置文件与有效载荷下载的有效载荷之间的关系进行了大规模调查。我们构建了一个全自动的框架,该框架使用沙箱中的虚拟机(VM)来构建自定义用户和机器配置文件以测试我们的恶意样本。然后,我们使用更改点分析来对不同下载器系列的行为进行建模,并对每个个人资料的感染比率进行差异分析(ANOVA)。因此,我们确定了哪个机器概况是由网络犯罪分子在不同时间点的目标。 我们的结果表明,许多下载者根据机器的许多功能提出了不同的行为。值得注意的是,当使用不同的浏览器配置文件,键盘布局和操作系统时,观察到更高的特定恶意软件家族感染,而一个键盘布局对特定恶意软件系列的感染较少。 我们的发现使运行恶意下载器软件的机器功能的功能很重要,尤其是在恶意软件研究中。
Malware affects millions of users worldwide, impacting the daily lives of many people as well as businesses. Malware infections are increasing in complexity and unfold over a number of stages. A malicious downloader often acts as the starting point as it fingerprints the victim's machine and downloads one or more additional malware payloads. Although previous research was conducted on these malicious downloaders and their Pay-Per-Install networks, limited work has investigated how the profile of the victim machine, e.g., its characteristics and software configuration, affect the targeting choice of cybercriminals. In this paper, we operate a large-scale investigation of the relation between the machine profile and the payload downloaded by droppers, through 151,189 executions of malware downloaders over a period of 12 months. We build a fully automated framework which uses Virtual Machines (VMs) in sandboxes to build custom user and machine profiles to test our malicious samples. We then use changepoint analysis to model the behavior of different downloader families, and perform analyses of variance (ANOVA) on the ratio of infections per profile. With this, we identify which machine profile is targeted by cybercriminals at different points in time. Our results show that a number of downloaders present different behaviors depending on a number of features of a machine. Notably, a higher number of infections for specific malware families were observed when using different browser profiles, keyboard layouts and operating systems, while one keyboard layout obtained fewer infections of a specific malware family. Our findings bring light to the importance of the features of a machine running malicious downloader software, particularly for malware research.