论文标题

使用计算机断层扫描使用3D CNN进行有效的肝分割

Efficient liver segmentation with 3D CNN using computed tomography scans

论文作者

Humady, Khaled, Al-Saeed, Yasmeen, Eladawi, Nabila, Elgarayhi, Ahmed, Elmogy, Mohammed, Sallah, Mohammed

论文摘要

肝脏是脊椎动物中最关键的代谢器官之一,由于其在人体中的重要功能,例如废物产物和药物的血液排毒。由于肝肿瘤引起的肝病是全球最常见的死亡率之一。因此,在肿瘤发育的早期阶段检测肝肿瘤是医疗的关键部分。许多成像方式可以用作检测肝肿瘤的帮助工具。计算机断层扫描(CT)是软组织器官(例如肝脏)最常用的成像方式。这是因为它是一种侵入性方式,可以相对迅速捕获。本文提出了一个有效的自动肝分割框架,以使用3D CNN深度元网络模型从CT腹部扫描中检测和分割肝脏。许多研究都采用了精确细分肝脏区域,然后使用分割的肝区域作为肿瘤分割方法的输入,因为它降低了由于将腹部器官分割为肿瘤而导致的错误率。所提出的3D CNN DeepMedic模型具有两个输入的途径,而不是一个途径,如原始3D CNN模型所示。在本文中,该网络提供了多个腹部CT版本,这有助于提高细分质量。提出的模型分别达到了94.36%,94.57%,91.86%和93.14%的精度,灵敏度,特异性和骰子相似性得分。实验结果表明该方法的适用性。

The liver is one of the most critical metabolic organs in vertebrates due to its vital functions in the human body, such as detoxification of the blood from waste products and medications. Liver diseases due to liver tumors are one of the most common mortality reasons around the globe. Hence, detecting liver tumors in the early stages of tumor development is highly required as a critical part of medical treatment. Many imaging modalities can be used as aiding tools to detect liver tumors. Computed tomography (CT) is the most used imaging modality for soft tissue organs such as the liver. This is because it is an invasive modality that can be captured relatively quickly. This paper proposed an efficient automatic liver segmentation framework to detect and segment the liver out of CT abdomen scans using the 3D CNN DeepMedic network model. Segmenting the liver region accurately and then using the segmented liver region as input to tumors segmentation method is adopted by many studies as it reduces the false rates resulted from segmenting abdomen organs as tumors. The proposed 3D CNN DeepMedic model has two pathways of input rather than one pathway, as in the original 3D CNN model. In this paper, the network was supplied with multiple abdomen CT versions, which helped improve the segmentation quality. The proposed model achieved 94.36%, 94.57%, 91.86%, and 93.14% for accuracy, sensitivity, specificity, and Dice similarity score, respectively. The experimental results indicate the applicability of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源