论文标题

在$ \ mathbb {z} _p $ - extension上的椭圆曲线的精细Selmer组的核心上

On the corank of the fine Selmer group of an elliptic curve over a $\mathbb{Z}_p$-extension

论文作者

Ray, Anwesh

论文摘要

令$ p $为奇数,$ f_ \ infty $为$ \ mathbb {z} _p $ - 数字字段$ f $的扩展。鉴于椭圆曲线$ e $ $ $ f $,我们研究了$ f_ \ infty $的优质Selmer组的结构。结果表明,在某些条件下,精细的Selmer组是一个超过$ \ Mathbb {Z} _p $的可加工的模块,此外,我们在各种本地和全球不可投射的方面都获得了其Corank的上限(即$λ$ -Invariant)。

Let $p$ be an odd prime and $F_\infty$ be a $\mathbb{Z}_p$-extension of a number field $F$. Given an elliptic curve $E$ over $F$, we study the structure of the fine Selmer group over $F_\infty$. It is shown that under certain conditions, the fine Selmer group is a cofinitely generated module over $\mathbb{Z}_p$ and furthermore, we obtain an upper bound for its corank (i.e., the $λ$-invariant), in terms of various local and global invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源