论文标题
Ricci流量奇异性模型的标量曲率的下限
Lower bounds for the scalar curvatures of Ricci flow singularity models
论文作者
论文摘要
在一系列论文中,Bamler [BAM20A,BAM20B,BAM20C]进一步开发了汉密尔顿RICCI流的高维理论,包括新的单调性公式,完全一般的紧凑型定理,以及与脸颊折叠理论相似的长期偏向的部分规律性理论。在本文中,我们将他的理论应用于Ricci流的奇异模型标量曲率的下限。在$ 4 $二维的非Ricci-Flat稳定孤子奇异模型的情况下,我们获得了标量曲率的二次衰减下限。
In a series of papers, Bamler [Bam20a,Bam20b,Bam20c] further developed the high-dimensional theory of Hamilton's Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger--Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of $4$-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.