论文标题

大规模的完整可编程量子步行及其应用

Large-scale full-programmable quantum walk and its applications

论文作者

Wang, Yizhi, Liu, Yingwen, Zhan, Junwei, Xue, Shichuan, Zheng, Yuzhen, Zeng, Ru, Wu, Zhihao, Wang, Zihao, Zheng, Qilin, Wang, Dongyang, Shi, Weixu, Fu, Xiang, Xu, Ping, Wang, Yang, Liu, Yong, Ding, Jiangfang, Huang, Guangyao, Yu, Chunlin, Huang, Anqi, Qiang, Xiaogang, Deng, Mingtang, Xu, Weixia, Lu, Kai, Yang, Xuejun, Wu, Junjie

论文摘要

使用光子学,已经证明了量子计算优势在玻色子采样的任务上。接下来,为实践问题开发量子增强方法成为光子系统的首要任务之一。量子步行是用于开发新的和有用的量子算法的强大内核。在这里,我们意识到使用完全可编程的光子量子计算系统进行大规模量子步行。该系统集成了硅量子光子芯片,从而在图形上具有多达400个顶点的量子步行动力学模拟,并且在量子步行参数上具有完整的可编程性,包括粒子特性,初始状态,图形结构和进化时间。在400维希尔伯特领域中,整个芯片电路演变的平均纠结量子状态的平均忠诚度达到了94.29 $ \ pm $ 1.28 $ \%$ \%$。借助该系统,我们证明了量子的命中率更快和四倍的混合性能在经典的随机步行上的混合性能,在实验性打击效率中达到了两个以上的增强级数,而在实验进化时间降低了混合时间的降低几乎一半。我们利用该系统来实施一系列量子应用程序,包括测量无比例网络的中心性,在Erdös-rényi网络上搜索目标,区分非同构图对以及模拟高阶拓扑绝缘子的拓扑阶段。我们的工作显示了量子光子学在不久的将来解决实际利益的应用的一条可行途径。

With photonics, the quantum computational advantage has been demonstrated on the task of boson sampling. Next, developing quantum-enhanced approaches for practical problems becomes one of the top priorities for photonic systems. Quantum walks are powerful kernels for developing new and useful quantum algorithms. Here we realize large-scale quantum walks using a fully programmable photonic quantum computing system. The system integrates a silicon quantum photonic chip, enabling the simulation of quantum walk dynamics on graphs with up to 400 vertices and possessing full programmability over quantum walk parameters, including the particle property, initial state, graph structure, and evolution time. In the 400-dimensional Hilbert space, the average fidelity of random entangled quantum states after the whole on-chip circuit evolution reaches as high as 94.29$\pm$1.28$\%$. With the system, we demonstrated exponentially faster hitting and quadratically faster mixing performance of quantum walks over classical random walks, achieving more than two orders of magnitude of enhancement in the experimental hitting efficiency and almost half of the reduction in the experimental evolution time for mixing. We utilize the system to implement a series of quantum applications, including measuring the centrality of scale-free networks, searching targets on Erdös-Rényi networks, distinguishing non-isomorphic graph pairs, and simulating the topological phase of higher-order topological insulators. Our work shows one feasible path for quantum photonics to address applications of practical interests in the near future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源