论文标题
从数据采样的角度面对反欺骗
Face Anti-Spoofing from the Perspective of Data Sampling
论文作者
论文摘要
如果不部署面部抗旋转对策,则可以通过呈现印刷照片,视频或真实用户的硅面膜来欺骗面部识别系统。因此,面对表现攻击检测(PAD)在提供对数字设备的安全访问方面起着至关重要的作用。大多数现有的基于视频的垫子对策都无法应付视频中的远程时间变化。此外,在特征提取步骤之前的键框采样尚未在面部反欺骗域中广泛研究。为了减轻这些问题,本文通过提出一种视频处理方案来提供一种数据采样方法,该方案基于高斯加权功能进行建模远程时间变化。具体而言,提出的方案将视频序列的连续T帧编码基于T帧的高斯加权求和,将视频序列的连续T帧编码为单个RGB图像。仅使用数据采样方案,我们证明可以在三个公共基准数据集的数据库内和数据库间测试方案中没有任何铃铛和哨子来实现最先进的性能;即,重播攻击,MSU-MFSD和CASIA-FASD。特别是,与跨数据库情景中的基线相比,该方案的误差较低(CASIA-FASD的15.2%至6.7%,重播攻击的5.9%至4.9%)。
Without deploying face anti-spoofing countermeasures, face recognition systems can be spoofed by presenting a printed photo, a video, or a silicon mask of a genuine user. Thus, face presentation attack detection (PAD) plays a vital role in providing secure facial access to digital devices. Most existing video-based PAD countermeasures lack the ability to cope with long-range temporal variations in videos. Moreover, the key-frame sampling prior to the feature extraction step has not been widely studied in the face anti-spoofing domain. To mitigate these issues, this paper provides a data sampling approach by proposing a video processing scheme that models the long-range temporal variations based on Gaussian Weighting Function. Specifically, the proposed scheme encodes the consecutive t frames of video sequences into a single RGB image based on a Gaussian-weighted summation of the t frames. Using simply the data sampling scheme alone, we demonstrate that state-of-the-art performance can be achieved without any bells and whistles in both intra-database and inter-database testing scenarios for the three public benchmark datasets; namely, Replay-Attack, MSU-MFSD, and CASIA-FASD. In particular, the proposed scheme provides a much lower error (from 15.2% to 6.7% on CASIA-FASD and 5.9% to 4.9% on Replay-Attack) compared to baselines in cross-database scenarios.