论文标题
评估角膜后屈光手术的生物力学特性
Assessment of Biomechanical Properties for Corneal Post Refractive Surgery
论文作者
论文摘要
必须持续进行屈光手术的角膜形状,以避免传播后手术去补偿。这种去补偿会导致视觉并发症和不满意的过程恢复。最近使用激光消融和破坏技术引起了角膜薄片和胶原纤维的变化。在弹性角膜前和手术后,保护中央顶点扁平和周围陡峭的稳定反应是成功屈光手术的最终目的。通过评估角膜生物力学特性,可以实现脑膜角膜疾病的早期诊断和对角膜发病机理的更好理解。这项研究的最终目标是估计正常和致病性角膜组织前后术后屈光手术的生物力学特性。这是使用超声波声辐射力冲动作为一种非侵入性方法来占其高定位的一种实现的。诱导的位移跟踪方法将用于评估与所研究软组织有关的软组织生物力学特性。将进行超声探针模拟以优化探针设计。 FEM模拟将进行精确估计的原位角膜组织生物力学。在这项研究中,使用声学辐射力脉冲研究和估计角膜生物力学特性。这是通过估计局灶峰轴向变形值或通过估计所得传播变形波的剪切波速度来实现的。
A stable shape for corneas experiencing refractive surgery has to be sustained so as to elude post-refractive surgery de-compensation. This de-compensation leads to visual complications and unsatisfactory procedure recovery. Variation in corneal lamellae and collagen fibres is induced by recent LASER refractive surgical procedures utilizing LASER ablation and disruption techniques. Conserving a steady response of central apex flattening and peripheral steepening in an elastic cornea pre- and post- procedure is the ultimate purpose of successful refractive surgery. Early diagnosis of ectatic corneal disorders and better understanding of corneal pathogenesis is achieved by assessment of corneal biomechanical properties. The ultimate objective of this research is to estimate the biomechanical properties for both normal and pathogenic corneal tissue pre- and post-operative refractive surgery. This achieved using ultrasonic acoustic radiation force impulse as a non-invasive method accounting for its high localization. Induced displacement tracking methods will be utilized for assessment of soft tissue biomechanical properties related to the investigated soft tissue. Ultrasound probe simulations will be carried out to optimize the probe design. FEM simulations will take place to precisely estimate in-situ corneal tissue biomechanics. In this research, corneal biomechanical properties are studied and estimated using acoustic radiation force impulse. This is achieved either by estimating the focal peak axial deformation value or by estimating the shear wave speed for the resulting propagating deformation wave.