论文标题

用于计算多铁分解的记忆有效的Fock空间递归方案

Memory efficient Fock-space recursion scheme for computing many-fermion resolvents

论文作者

Prabhakar, Mukherjee, Anamitra

论文摘要

众多特里米昂问题的确切数值解决方案的基本障碍是具有系统大小的希尔伯特空间的指数增长。它表现为模拟多个特里米亚过程的极端动态内存和计算时间要求。在这里,我们构建了希尔伯特空间的新型重组,以确定动态记忆需求的指数增长被我们的方法中的系统大小呈互为抑制。因此,可以以较少的存储器进行最新的分解计算。记忆效率不依赖于哈密顿的对称性,稀疏性或边界条件,并且不需要额外的存储器来处理远程密度密度相互作用和跳跃。我们提供了相互作用的基态能量,状态的多个特性密度和相互作用的基态在一个和二维中相互作用的基础状态中很少的激发的示例计算。

A fundamental roadblock to the exact numerical solution of many-fermion problems is the exponential growth of the Hilbert space with system size. It manifests as extreme dynamical memory and computation-time requirements for simulating many-fermion processes. Here we construct a novel reorganization of the Hilbert space to establish that the exponential growth of dynamical-memory requirement is suppressed inversely with system size in our approach. Consequently, the state-of-the-art resolvent computation can be performed with substantially less memory. The memory-efficiency does not rely on Hamiltonian symmetries, sparseness, or boundary conditions and requires no additional memory to handle long-range density-density interaction and hopping. We provide examples calculations of interacting fermion ground state energy, the many-fermion density of states and few-body excitations in interacting ground states in one and two dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源