论文标题
在整个幻灯片图像中用于污渍转移的区域引导的自行车
Region-guided CycleGANs for Stain Transfer in Whole Slide Images
论文作者
论文摘要
在整个幻灯片成像中,通常使用苏木精和曙红(H&E)(H&E)和免疫组织化学(IHC)染色的染色技术突出组织景观的各个方面。在检测转移的情况下,IHC提供了一个独特的读数,该读数很容易被病理学家解释。但是,IHC是一种更昂贵的方法,在所有医疗中心都不可用。因此,使用深神经网络从H&E产生IHC图像成为一种有吸引力的替代方法。深层生成模型(例如Cyclegans)学习了两个图像域之间的语义一致映射,同时模拟每个域的纹理特性。因此,它们是污渍转移应用程序的合适选择。但是,它们仍然完全不受监督,并且没有在染色转移中执行生物学一致性的机制。在本文中,我们提出了以歧视者区域形式向自行车行驶的扩展。这使Cyclegan可以从未配对的数据集中学习,此外,在这些数据集中,有部分倾向的对象注释,希望它能强制执行一致性。我们在整个幻灯片图像上介绍了用例,其中IHC染色为转移性细胞提供了实验生成的信号。我们证明了我们的方法优于先前在两个数据集上的组织病理学瓷砖的污渍转移中的优越性。我们的代码和型号可在https://github.com/jcboyd/miccai2022-Roigan上找到。
In whole slide imaging, commonly used staining techniques based on hematoxylin and eosin (H&E) and immunohistochemistry (IHC) stains accentuate different aspects of the tissue landscape. In the case of detecting metastases, IHC provides a distinct readout that is readily interpretable by pathologists. IHC, however, is a more expensive approach and not available at all medical centers. Virtually generating IHC images from H&E using deep neural networks thus becomes an attractive alternative. Deep generative models such as CycleGANs learn a semantically-consistent mapping between two image domains, while emulating the textural properties of each domain. They are therefore a suitable choice for stain transfer applications. However, they remain fully unsupervised, and possess no mechanism for enforcing biological consistency in stain transfer. In this paper, we propose an extension to CycleGANs in the form of a region of interest discriminator. This allows the CycleGAN to learn from unpaired datasets where, in addition, there is a partial annotation of objects for which one wishes to enforce consistency. We present a use case on whole slide images, where an IHC stain provides an experimentally generated signal for metastatic cells. We demonstrate the superiority of our approach over prior art in stain transfer on histopathology tiles over two datasets. Our code and model are available at https://github.com/jcboyd/miccai2022-roigan.