论文标题
用于资源受限边缘AI的复杂性驱动的CNN压缩
Complexity-Driven CNN Compression for Resource-constrained Edge AI
论文作者
论文摘要
在物联网(IoT)启用网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新设备,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层所表现出的复杂性的不同基本性质,并遵循训练 - 放回培训的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算上有效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了三种修剪模式,即参数感知(PA),拖失型(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,在准确性和加速度方面,我们的方法的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
Recent advances in Artificial Intelligence (AI) on the Internet of Things (IoT)-enabled network edge has realized edge intelligence in several applications such as smart agriculture, smart hospitals, and smart factories by enabling low-latency and computational efficiency. However, deploying state-of-the-art Convolutional Neural Networks (CNNs) such as VGG-16 and ResNets on resource-constrained edge devices is practically infeasible due to their large number of parameters and floating-point operations (FLOPs). Thus, the concept of network pruning as a type of model compression is gaining attention for accelerating CNNs on low-power devices. State-of-the-art pruning approaches, either structured or unstructured do not consider the different underlying nature of complexities being exhibited by convolutional layers and follow a training-pruning-retraining pipeline, which results in additional computational overhead. In this work, we propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs. Unlike typical methods, our proposed complexity-driven algorithm selects a particular layer for filter-pruning based on its contribution to overall network complexity. We follow a procedure that directly trains the pruned model and avoids the computationally complex ranking and fine-tuning steps. Moreover, we define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs. Our results show the competitive performance of our approach in terms of accuracy and acceleration. Lastly, we present a trade-off between different resources and accuracy which can be helpful for developers in making the right decisions in resource-constrained IoT environments.