论文标题

使用有监督的深度复发系统进行心理健康监测的语音情绪识别

Speech Emotion Recognition using Supervised Deep Recurrent System for Mental Health Monitoring

论文作者

Elsayed, Nelly, ElSayed, Zag, Asadizanjani, Navid, Ozer, Murat, Abdelgawad, Ahmed, Bayoumi, Magdy

论文摘要

了解人类行为和监测心理健康对于维持社区和社会的安全至关重要。由于不受控制的心理健康,由于心理健康期间,由于心理健康期间的心理健康问题存在增加,因此对心理问题的早期发现至关重要。如今,智能虚拟个人助理(IVA)的使用已在全球范围内增加。个人使用声音来控制这些设备以满足请求并获得不同的服务。本文提出了一种基于封闭式复发神经网络和卷积神经网络的新型深度学习模型,以了解人类的情感从语音中,以改善其IVA服务并监控其心理健康。

Understanding human behavior and monitoring mental health are essential to maintaining the community and society's safety. As there has been an increase in mental health problems during the COVID-19 pandemic due to uncontrolled mental health, early detection of mental issues is crucial. Nowadays, the usage of Intelligent Virtual Personal Assistants (IVA) has increased worldwide. Individuals use their voices to control these devices to fulfill requests and acquire different services. This paper proposes a novel deep learning model based on the gated recurrent neural network and convolution neural network to understand human emotion from speech to improve their IVA services and monitor their mental health.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源