论文标题
使用微加工刺激激光冷却
Stimulated Laser Cooling Using Microfabrication
论文作者
论文摘要
我们已经在硅芯片上实现了热蛋糕原子束的激光冷却。通过硅微通道阵列进行预汇合后,我们通过蓝滴的光学糖蜜进行光束亮度。由于芯片元素的尺寸较小,我们仅需要8兆瓦的功率,即比早期在Cesium上的自由空间实验低9倍的功率[Fack等,Phys。莱特牧师。 57,1688(1986)]。硅微龙头是制造和手工组装的,以精确地重叠具有薄片形的原子密度分布的强椭圆形静态波,并精确地选择了尺寸以匹配这些尺寸。我们将横向速度扩散到1 m/s以下,在硅基板上的总行进距离为4.5 mm之内。我们使用多普勒敏感的两光子拉曼光谱法来表征冷却。与前面使用的飞行时间方法相反,这种方法需要一个较短的设备才能实现相似的分辨率。这种被动和主动准直的杂种铺平了朝着建造成熟原子仪器(例如原子束时钟和陀螺仪)的道路,完全通过批处理过程完全芯片。
We have achieved stimulated laser cooling of thermal rubidium atomic beams on a silicon chip. Following pre-collimation via a silicon microchannel array, we perform beam brightening via a blue-detuned optical molasses. Owing to the small size of the chip elements, we require only 8 mW, or nine times lower power than earlier free-space experiments on cesium [Aspect et al., Phys. Rev. Lett. 57, 1688 (1986)]. Silicon micromirrors are fabricated and hand-assembled to precisely overlap a strong elliptical standing wave with a sheet-shaped atomic density distribution, with dimensions chosen precisely to match these. We reduce the transverse velocity spread to below 1 m/s within a total travel distance of 4.5 mm on a silicon substrate. We use Doppler-sensitive two-photon Raman spectroscopy to characterize the cooling. In contrast to time-of-flight methods utilized previously, this approach requires a much shorter apparatus to achieve similar resolution. This hybrid of passive and active collimation paves the way toward the construction of full-fledged atomic instruments, such as atomic beam clocks and gyroscopes, entirely on-chip through batch-fabricated processes.