论文标题

CATLAS:用于直接合成器转换的催化剂发现的自动框架

Catlas: an automated framework for catalyst discovery demonstrated for direct syngas conversion

论文作者

Wander, Brook, Broderick, Kirby, Ulissi, Zachary W.

论文摘要

催化剂的发现对于支持化石燃料时代的能源和关键化学原料的访问至关重要。使用Ab-Initio方法(如密度功能理论(DFT))对大型材料设计空间进行详尽的计算搜索是不可行的。我们试图通过利用大型,广义的基于图的机器学习(ML)模型来探索以相对较低的计算成本探索大型设计空间,这些模型经过了审议,因此不需要前期数据收集或培训。我们提出CATLAS,该框架分布并自动化了Adsorbate-surface配置的生成和DFT Energies的ML推断以实现此目标。 Catlas是开源的,使ML辅助催化剂筛选变得容易且所有人可用。为了证明其功效,我们使用CATLA来探索催化剂候选物,以直接转化合型氧化物。在此案例研究中,我们探索947个稳定/亚稳定的二元过渡金属间的金属间法物作为候选催化剂。在这一材料子集上,我们能够以接近DFT的精度(分别为0.16,0.14 ev Mae)预测关键描述符 *CO和 *OH的吸附能。使用对现有微动模型的C2+氧化的预测选择性,我们确定了144种候选材料。对于10名有前途的候选人,DFT计算与使用ML的评估有良好的相关性。在最高的元素组合中,是PT-TI,PD-V,Ni-NB和Ti-ZN,所有这些组合在实验中似乎都没有探索。

Catalyst discovery is paramount to support access to energy and key chemical feedstocks in a post fossil fuel era. Exhaustive computational searches of large material design spaces using ab-initio methods like density functional theory (DFT) are infeasible. We seek to explore large design spaces at relatively low computational cost by leveraging large, generalized, graph-based machine learning (ML) models, which are pretrained and therefore require no upfront data collection or training. We present catlas, a framework that distributes and automates the generation of adsorbate-surface configurations and ML inference of DFT energies to achieve this goal. Catlas is open source, making ML assisted catalyst screenings easy and available to all. To demonstrate its efficacy, we use catlas to explore catalyst candidates for the direct conversion of syngas to multi-carbon oxygenates. For this case study, we explore 947 stable/ metastable binary, transition metal intermetallics as possible catalyst candidates. On this subset of materials, we are able to predict the adsorption energy of key descriptors, *CO and *OH, with near-DFT accuracy (0.16, 0.14 eV MAE, respectively). Using the projected selectivity towards C2+ oxygenates from an existing microkinetic model, we identified 144 candidate materials. For 10 promising candidates, DFT calculations reveal a good correlation with our assessment using ML. Among the top elemental combinations were Pt-Ti, Pd-V, Ni-Nb, and Ti-Zn, all of which appear unexplored experimentally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源