论文标题

Voxurf:基于体素的有效和准确的神经表面重建

Voxurf: Voxel-based Efficient and Accurate Neural Surface Reconstruction

论文作者

Wu, Tong, Wang, Jiaqi, Pan, Xingang, Xu, Xudong, Theobalt, Christian, Liu, Ziwei, Lin, Dahua

论文摘要

神经表面重建旨在基于多视图图像重建准确的3D表面。基于神经音量的先前方法主要训练一个完全隐含的模型,该模型通常需要单个场景的数小时培训。最近的努力探讨了明确的体积表示,以通过使用可学习的素网记忆大量信息来加速优化。但是,现有的基于体素的方法在重建细粒几何形状方面也经常挣扎,即使与基于SDF的量渲染方案结合使用。我们揭示这是因为1)体素电网倾向于打破促进细几何学习的色谱体依赖性,而2)受约束的体素电网缺乏空间相干性,并且容易受到局部最小值的影响。在这项工作中,我们提出了Voxurf,这是一种基于体素的表面重建方法,既有效又准确。 Voxurf通过几种关键设计解决了上述问题,包括1)两阶段的训练程序,该程序达到了连贯的粗糙形状并连续恢复了细节,2)双色网络维持颜色几何依赖性,以及3)层次结构几何形状,以鼓励跨Voxels的信息传播。广泛的实验表明,Voxurf同时达到了高效率和高质量。在DTU基准测试中,与以前的完全隐式方法相比,Voxurf通过20倍训练的速度实现了更高的重建质量。我们的代码可从https://github.com/wutong16/voxurf获得。

Neural surface reconstruction aims to reconstruct accurate 3D surfaces based on multi-view images. Previous methods based on neural volume rendering mostly train a fully implicit model with MLPs, which typically require hours of training for a single scene. Recent efforts explore the explicit volumetric representation to accelerate the optimization via memorizing significant information with learnable voxel grids. However, existing voxel-based methods often struggle in reconstructing fine-grained geometry, even when combined with an SDF-based volume rendering scheme. We reveal that this is because 1) the voxel grids tend to break the color-geometry dependency that facilitates fine-geometry learning, and 2) the under-constrained voxel grids lack spatial coherence and are vulnerable to local minima. In this work, we present Voxurf, a voxel-based surface reconstruction approach that is both efficient and accurate. Voxurf addresses the aforementioned issues via several key designs, including 1) a two-stage training procedure that attains a coherent coarse shape and recovers fine details successively, 2) a dual color network that maintains color-geometry dependency, and 3) a hierarchical geometry feature to encourage information propagation across voxels. Extensive experiments show that Voxurf achieves high efficiency and high quality at the same time. On the DTU benchmark, Voxurf achieves higher reconstruction quality with a 20x training speedup compared to previous fully implicit methods. Our code is available at https://github.com/wutong16/Voxurf.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源