论文标题
删除和恢复:从条件因果的角度来看,介入的知识蒸馏量很少。
Disentangle and Remerge: Interventional Knowledge Distillation for Few-Shot Object Detection from A Conditional Causal Perspective
论文作者
论文摘要
很少有学习模型学习人类注释有限的表示表示形式,而这种学习范式在各种任务(例如,图像分类,对象检测等)中证明了实用性。但是,很少有弹射的对象检测方法遭受了内在缺陷的影响,即有限的训练数据使该模型无法充分探索语义信息。为了解决这个问题,我们将知识蒸馏引入了几个弹出的对象检测学习范式。我们进一步运行了一个激励人心的实验,该实验表明,在知识蒸馏过程中,教师模型的经验误差将少数拍物体检测模型作为学生的预测性能退化。为了理解这种现象的原因,我们从因果理论的角度重新审视了几个射击对象检测任务上知识蒸馏的学习范式,并因此发展了一个结构性因果模型。遵循理论指导,我们为少数弹射对象检测任务(即解开和恢复)(D&R)提出了一种基于后门调整的知识蒸馏方法(D&R),以对相应的结构性因果模型进行有条件的因果干预。从经验上讲,基准测试的实验表明,D&R可以在几个射击对象检测中产生显着的性能提升。代码可在https://github.com/zyn-1101/dandr.git上找到。
Few-shot learning models learn representations with limited human annotations, and such a learning paradigm demonstrates practicability in various tasks, e.g., image classification, object detection, etc. However, few-shot object detection methods suffer from an intrinsic defect that the limited training data makes the model cannot sufficiently explore semantic information. To tackle this, we introduce knowledge distillation to the few-shot object detection learning paradigm. We further run a motivating experiment, which demonstrates that in the process of knowledge distillation, the empirical error of the teacher model degenerates the prediction performance of the few-shot object detection model as the student. To understand the reasons behind this phenomenon, we revisit the learning paradigm of knowledge distillation on the few-shot object detection task from the causal theoretic standpoint, and accordingly, develop a Structural Causal Model. Following the theoretical guidance, we propose a backdoor adjustment-based knowledge distillation method for the few-shot object detection task, namely Disentangle and Remerge (D&R), to perform conditional causal intervention toward the corresponding Structural Causal Model. Empirically, the experiments on benchmarks demonstrate that D&R can yield significant performance boosts in few-shot object detection. Code is available at https://github.com/ZYN-1101/DandR.git.