论文标题

朝着野外强大的无人机视觉

Towards Robust Drone Vision in the Wild

论文作者

Lin, Xiaoyu

论文摘要

在过去的几年中,计算机视觉起着至关重要的作用,目睹了基于无人机的应用。但是,大多数基于公共无人机的视力数据集都集中在检测和跟踪上。另一方面,大多数现有图像超分辨率方法的性能对数据集敏感,特别是高分辨率和低分辨率图像之间的退化模型。在本文中,我们提出了第一个用于无人机视觉的超分辨率数据集。图像对由具有不同焦距的无人机上的两个摄像机捕获。我们在不同的高度收集数据,然后提出预处理步骤以对齐图像对。广泛的经验研究表明,在不同高度捕获的图像之间存在域间隙。同时,预验证的图像超分辨率网络的性能在我们的数据集上也有所下降,并且海拔不同。最后,我们提出了两种方法,以在不同高度建立强大的图像超分辨率网络。第一个通过高度感知的层将高度信息馈送到网络中。第二个使用单光学习来快速使超分辨率模型适应未知高度。我们的结果表明,所提出的方法可以有效地提高不同海拔高度的超分辨率网络的性能。

The past few years have witnessed the burst of drone-based applications where computer vision plays an essential role. However, most public drone-based vision datasets focus on detection and tracking. On the other hand, the performance of most existing image super-resolution methods is sensitive to the dataset, specifically, the degradation model between high-resolution and low-resolution images. In this thesis, we propose the first image super-resolution dataset for drone vision. Image pairs are captured by two cameras on the drone with different focal lengths. We collect data at different altitudes and then propose pre-processing steps to align image pairs. Extensive empirical studies show domain gaps exist among images captured at different altitudes. Meanwhile, the performance of pretrained image super-resolution networks also suffers a drop on our dataset and varies among altitudes. Finally, we propose two methods to build a robust image super-resolution network at different altitudes. The first feeds altitude information into the network through altitude-aware layers. The second uses one-shot learning to quickly adapt the super-resolution model to unknown altitudes. Our results reveal that the proposed methods can efficiently improve the performance of super-resolution networks at varying altitudes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源