论文标题
操作员在与一类广义分析功能相关的伯格曼空间上的界限
Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk ${\mathbb{D}}$, denoted by $A^{p}_{λ,w}({\mathbb{D}})$, that are associated with a class of generalized analytic functions, named the $λ$-analytic functions, and with a class of radial weight functions $w$. For $λ\ge0$, a $C^2$ function $f$ on ${\mathbb D}$ is said to be $λ$-analytic if $D_{\bar{z}}f=0$, where $D_{\bar{z}}$ is the (complex) Dunkl operator given by $D_{\bar{z}}f=\partial_{\bar{z}}f-λ(f(z)-f(\bar{z}))/(z-\bar{z})$. It is shown that, for $2λ/(2λ+1)\le p\le1$, the boundedness of an operator from $A^{p}_{λ,w}({\mathbb{D}})$ into a Banach space depends only upon the norm estimate of a single vector-valued $λ$-analytic function. As applications, we obtain a necessary and sufficient conditions of sequence multipliers on the spaces $A^{p}_{λ,w}({\mathbb{D}})$ for general weights $w$, and characterize the dual space of $A^{p}_{λ,w}({\mathbb{D}})$ for the power weight $w=(1-|z|^2)^{α-1}$ with $α>0$, and also give a sufficient condition of Carleson type for boundedness of multiplication operators on $A^{p}_{λ,w}({\mathbb{D}})$.