论文标题

全局FRéchet回归从流动中相关的双变量曲线数据

Global Fréchet regression from time correlated bivariate curve data in manifolds

论文作者

Torres-Signes, A., Frías, M. P., Ruiz-Medina, M. D.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Global Fréchet regression is addressed from the observation of a strictly stationary bivariate curve process, evaluated in a finite--dimensional compact differentiable Riemannian manifold, with bounded positive smooth sectional curvature. The involved univariate curve processes respectively define the functional response and regressor, having the same Fréchet functional mean. The supports of the marginal probability measures of the regressor and response processes are assumed to be contained in a ball, whose radius ensures the injectivity of the exponential map. This map has time--varying origin at the common marginal Fréchet functional mean. A weighted Fréchet mean approach is adopted in the definition of the theoretical loss function. The regularized Fréchet weights are computed, in the time--varying tangent space from the log--mapped regressors. Under these assumptions, and some Lipschitz regularity sample path conditions, when a unique minimizer exists, the uniform weak--consistency of the empirical Fréchet curve predictor is obtained, under mean--square ergodicity of the log--mapped regressor process in the first two moments. A simulated example in the sphere illustrates the finite sample size performance of the proposed Fréchet predictor. Predictions in time of the spherical coordinates of the magnetic field vector are obtained from the time--varying geocentric latitude and longitude of the satellite NASA's MAGSAT spacecraft in the real--data example analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源