论文标题

非线性凸变量问题的通用性

Universality for non-linear convex variational problems

论文作者

Berná, Pablo M., Falcó, Antonio

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This article introduces an innovative mathematical framework designed to tackle non-linear convex variational problems in reflexive Banach spaces. Our approach employs a versatile technique that can handle a broad range of variational problems, including standard ones. To carry out the process effectively, we utilize specialized sets known as radial dictionaries, where these dictionaries encompass diverse data types, such as tensors in Tucker format with bounded rank and Neural Networks with fixed architecture and bounded parameters. The core of our method lies in employing a greedy algorithm through dictionary optimization defined by a multivalued map. Significantly, our analysis shows that the convergence rate achieved by our approach is comparable to the Method of Steepest Descend implemented in a reflexive Banach space, where the convergence rate follows the order of $O(m^{-1})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源