论文标题

关于有限截止的纠缠传播

On the Spread of Entanglement at Finite Cutoff

论文作者

Coleman, Evan, Soni, Ronak M, Yang, Sungyeon

论文摘要

我们研究了纠缠如何在有限速率的三维理论的边界双重双重双重上传播,具有正,负和零宇宙常数,$ t \ bar {t} +λ_{2} $二维理论。我们首先研究了所有三种情况下的鹰页面转变,并发现在所有三种情况下都有一个过渡,在温度下,圆环的两个周期的长度相同。然后,我们研究了霍金 - 页面上方的热菲尔德双状态的纠缠熵,该区域对称地位于两个边界上。我们考虑区域在两侧间隔一个间隔的情况下,以及每侧两个间隔的情况。我们对纠缠纠缠熵的时间进化进行了纠缠海啸的解释。

We study how entanglement spreads in the boundary duals of finite-cutoff three-dimensional theories with positive, negative and zero cosmological constant, the $T \bar{T} + Λ_{2}$ two-dimensional theories. We first study the Hawking-Page transition in all three cases, and find that there is a transition in all three scenarios at the temperature where the lengths of the two cycles of the torus are the same. We then study the entanglement entropy in the thermofield double states above the Hawking-Page transition, of regions symmetrically placed on the two boundaries. We consider the case where the region is one interval on each side, and the case where it is two intervals on each side. We give an entanglement tsunami interpretation of the time-evolution of the entanglement entropies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源