论文标题
用螺旋对称性的流体动力学
Hydrodynamics with helical symmetry
论文作者
论文摘要
我们以螺旋对称性为三个空间维度中呈现流体的流体动力学,其中仅在三个方向之一中保守旋转和翻译的线性组合。当相应的动量保守时,流体动力学自由度由标量密度(例如能量或电荷)以及两个速度场组成。非隔离性流体动力系数让人联想到手性涡度系数。我们写下表现出螺旋对称性的微观哈密顿动力学系统,并使用动力学理论证明,这些系统将一般会表现出我们在流体动力学中预测的新的螺旋现象。我们还使用现代有效的现场理论技术来证实我们的发现。我们假定固定的胆汁固醇液晶可能具有螺旋流体的运输系数,在以前的文献中似乎被忽略了。
We present the hydrodynamics of fluids in three spatial dimensions with helical symmetry, wherein only a linear combination of a rotation and translation is conserved in one of the three directions. The hydrodynamic degrees of freedom consist of scalar densities (e.g. energy or charge) along with two velocity fields transverse to the helical axis when the corresponding momenta are conserved. Nondissipative hydrodynamic coefficients reminiscent of chiral vortical coefficients arise. We write down microscopic Hamiltonian dynamical systems exhibiting helical symmetry, and we demonstrate using kinetic theory that these systems will generically exhibit the new helical phenomena that we predicted within hydrodynamics. We also confirm our findings using modern effective field theory techniques for hydrodynamics. We postulate regimes where pinned cholesteric liquid crystals may possess transport coefficients of a helical fluid, which appear to have been overlooked in previous literature.