论文标题
边界解义的量子关键在对称性保护拓扑链之间的过渡时
Boundary deconfined quantum criticality at transitions between symmetry-protected topological chains
论文作者
论文摘要
数十年的研究揭示了对受保护的边缘模式对拓扑量子物质的深刻理解。我们报告说,在各自边缘模式不兼容的两个物质之间进行调整时,甚至更丰富的物理学会出现。边缘的挫败感导致了新的边界物理学,例如具有异国情调的非陆地过渡的对称性阶段,即使边缘为零尺寸。作为一个最小的案例研究,我们考虑使用$ \ mathbb {z} _3 \ times \ mathbb {z} _3 $对称性的旋转链,展示了两个非平凡的对称性保护拓扑(SPT)阶段。在这些SPT阶段之间的批量1+1D临界过渡时,我们发现了两个稳定的0+1D边界阶段,每个阶段自发打破了$ \ Mathbb {z} _3 $ symmetries之一。此外,我们发现单个边界参数会调谐这两个阶段之间的非landau边界临界过渡。这构成了由带电的涡旋凝结驱动的外来现象的0+1d版本,称为解剖量子临界。这项工作强调了非平凡拓扑阶段之间富裕的临界物理学的富裕物理学,并为无间隙拓扑阶段的新兴领域提供了见解。
Decades of research have revealed a deep understanding of topological quantum matter with protected edge modes. We report that even richer physics emerges when tuning between two topological phases of matter whose respective edge modes are incompatible. The frustration at the edge leads to novel boundary physics, such as symmetry-breaking phases with exotic non-Landau transitions -- even when the edge is zero-dimensional. As a minimal case study we consider spin chains with $\mathbb{Z}_3 \times \mathbb{Z}_3$ symmetry, exhibiting two nontrivial symmetry-protected topological (SPT) phases. At the bulk 1+1D critical transition between these SPT phases, we find two stable 0+1D boundary phases, each spontaneously breaking one of the $\mathbb{Z}_3$ symmetries. Furthermore, we find that a single boundary parameter tunes a non-Landau boundary critical transition between these two phases. This constitutes a 0+1D version of an exotic phenomenon driven by charged vortex condensation known as deconfined quantum criticality. This work highlights the rich unexplored physics of criticality between nontrivial topological phases and provides insights into the burgeoning field of gapless topological phases.