论文标题
Kardar-Parisi-Zhang在数字量子模拟器上缩放的证据
Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator
论文作者
论文摘要
了解流体动力行为是如何从多粒子schrödinger方程的统一演变中出现的,这是非平衡统计力学的核心目标。在这项工作中,我们实施了自旋 - $ \ frac {1} {2} $ xxz自旋链在嘈杂的近期量子设备上的数字模拟 - $ \ frac {1} {2} $ xxz旋转链,我们在各向同性点上提取高温传输指数。我们使用由随机电路生成的伪随机状态在高温下模拟相关自旋相关函数的时间衰减,该状态专门针对IBMQ-Montreal $ 27 $ QUIT设备量身定制。最终的输出是在高度不均匀的背景下的自旋激发。从设备上的随后的离散时间动力学中,我们能够提取与各向同性点上猜想的Kardar-Parisi-Zhang(KPZ)缩放的异常超扩散指数。此外,我们通过应用积分破坏电位模拟自旋扩散的恢复。
Understanding how hydrodynamic behaviour emerges from the unitary evolution of the many-particle Schrödinger equation is a central goal of non-equilibrium statistical mechanics. In this work we implement a digital simulation of the discrete time quantum dynamics of a spin-$\frac{1}{2}$ XXZ spin chain on a noisy near-term quantum device, and we extract the high temperature transport exponent at the isotropic point. We simulate the temporal decay of the relevant spin correlation function at high temperature using a pseudo-random state generated by a random circuit that is specifically tailored to the ibmq-montreal $27$ qubit device. The resulting output is a spin excitation on a highly inhomogeneous background. From the subsequent discrete time dynamics on the device we are able to extract an anomalous super-diffusive exponent consistent with the conjectured Kardar-Parisi-Zhang (KPZ) scaling at the isotropic point. Furthermore we simulate the restoration of spin diffusion with the application of an integrability breaking potential.