论文标题

按需运输问题的实例生成工具

Instance generation tool for on-demand transportation problems

论文作者

Queiroz, Michell, Lucas, Flavien, Sorensen, Kenneth

论文摘要

我们提出了ReqReate,这是一种生成按需运输问题的实例的工具。此类问题包括根据乘客在时空限制下对运输的需求进行优化车辆路线(请求)。 ReqReate是灵活的,可以配置为在此问题类中生成大量问题的实例。在本文中,我们通过生成有关拨号问题(DARP)和按需总线路由问题(ODBRP)的实例来证明这一点。在大多数文献中,研究人员要么通过基于人造网络的实例来测试其算法,要么就特定城市或地区的实例进行现实生活中的案例研究。此外,根据均匀分布,大多数随机选择了对按需运输问题的请求的位置。 重新进行的目的是克服这些非现实和过度拟合的缺点。我们不依赖人工或有限的数据,而是从OpenStreetMaps(OSM)检索现实世界中的街道网络。据我们所知,这是第一个利用现实生活网络来生成实例来制定现有和即将发生的按需运输问题的实例的工具。此外,我们提出了一种简单的方法,该方法可以嵌入实例生成过程中,以产生不同的城市活动模式。我们对Rideshare Companies报告的现实生活数据集进行了分析,并将其与ReqReate生成的合成实例的属性进行了比较。这项工作的另一个贡献是引入实例相似性的概念,该概念支持创建各种基准集,此外,除了属性(大小,动态,紧迫性和地理分散体)外,还可以用来理解影响算法性能的原因。

We present REQreate, a tool to generate instances for on-demand transportation problems. Such problems consist of optimizing the routes of vehicles according to passengers' demand for transportation under space and time restrictions (requests). REQreate is flexible and can be configured to generate instances for a large number of problems in this problem class. In this paper, we demonstrate this by generating instances for the Dial-a-Ride Problem (DARP) and On-demand Bus Routing Problem (ODBRP). In most of the literature, researchers either test their algorithms with instances based on artificial networks or perform real-life case studies on instances derived from a specific city or region. Furthermore, locations of requests for on-demand transportation problems are mostly randomly chosen according to a uniform distribution. The aim of REQreate is to overcome these non-realistic and overfitting shortcomings. Rather than relying on either artificial or limited data, we retrieve real-world street networks from OpenStreetMaps (OSM). To the best of our knowledge, this is the first tool to make use of real-life networks to generate instances for an extensive catalogue of existing and upcoming on-demand transportation problems. Additionally, we present a simple method that can be embedded in the instance generation process to produce distinct urban mobility patterns. We perform an analysis with real life datasets reported by rideshare companies and compare them with properties of synthetic instances generated with REQreate. Another contribution of this work is the introduction of the concept of instance similarity that serves as support to create diverse benchmark sets, in addition to properties (size, dynamism, urgency and geographic dispersion) that could be used to comprehend what affects the performance of algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源