论文标题
风电场的随机动力唤醒建模
Stochastic dynamical wake modeling for wind farms
论文作者
论文摘要
传统上,涡轮唤醒的低保真分析模型已用于风场计划,性能评估,并证明了高级控制算法在增加年度能源生产方面的实用性。但是,在实践中,正确估计流量并使用常规的低保真模型实现显着的性能提高仍然具有挑战性。这是由于尾流预测的过度简化静态性质,这些模型对大气边界层湍流的影响以及风力涡轮机之间的复杂空气动力学相互作用。为了提高低保真模型的预测能力,同时还可以控制控制设计,我们提供了一个随机动力学建模框架,用于捕获由执行器磁盘概念确定的大气湍流对推力力和发电的影响。在这种方法中,我们使用湍流速度场的随机强制线性模型来增强分析计算的尾流速度,并与更高的效率模型保持一致,以捕获功率和推力力测量。通过凸优化确定我们随机模型的功率密度密度,以确保与部分可用的速度统计或功率和推力测量值保持一致,同时保留模型的pomimimony。我们证明了我们方法在捕获风力涡轮机背后湍流强度变化的效用,并估计了由大型涡流模拟产生的推力力和功率信号。我们的结果提供了有关稀疏场测量在使用随机线性模型恢复风电场湍流的统计标志方面的意义的洞察力。
Low-fidelity analytical models of turbine wakes have traditionally been used for wind farm planning, performance evaluation, and demonstrating the utility of advanced control algorithms in increasing the annual energy production. In practice, however, it remains challenging to correctly estimate the flow and achieve significant performance gains using conventional low-fidelity models. This is due to the over-simplified static nature of wake predictions from models that are agnostic to the effects of atmospheric boundary layer turbulence and the complex aerodynamic interactions among wind turbines. To improve the predictive capability of low-fidelity models while remaining amenable to control design, we offer a stochastic dynamical modeling framework for capturing the effect of atmospheric turbulence on the thrust force and power generation as determined by the actuator disk concept. In this approach, we use stochastically forced linear models of the turbulent velocity field to augment the analytically computed wake velocity and achieve consistency with higher-fidelity models in capturing power and thrust force measurements. The power-spectral densities of our stochastic models are identified via convex optimization to ensure consistency with partially available velocity statistics or power and thrust force measurements while preserving model parsimony. We demonstrate the utility of our approach in capturing turbulence intensity variations behind wind turbines and estimating thrust force and power signals generated by large-eddy simulations of the flow over a cascade of turbines. Our results provide insight into the significance of sparse field measurements in recovering the statistical signature of wind farm turbulence using stochastic linear models.