论文标题
关于ERDS不同的子集总和问题的一些评论
Some Remarks on the Erdős Distinct Subset Sums Problem
论文作者
论文摘要
令$ \ left \ {a_1,\ dots,a_n \ right \} \ subset \ mathbb {n} $是一组正整数,$ a_n $表示最大的元素,因此对于$ 2^n $ subset中的任何两个元素的总和中的所有元素的总和中的所有元素的总和都不同。 erds问,这是否意味着$ a_n \ geq c \ cdot 2^n $对于某些通用$ c> 0 $。我们证明,稍微扩展了麋鹿的结果,对于任何$ a_1,\ dots,a _n \ in \ mathbb {r} _ {> 0} $ $ $ $ $ \ int _ {\ int _ {\ mathbb {r}}} \ left( \ prod_ {i = 1}^{n} \ cos {(a_i x)^2} dx \ geq \ geq \fracπ{2^{n}} $$具有等值时,并且仅当所有子集总和$ 1- $分开时,仅当所有子集总和时。这导致了当前最佳下限$ a_n \ geq \ sqrt {2/πn} \ cdot 2^n $的新证明。主要的新见解是,具有不同的子集总和和$ a_n $ SMALL需要随机变量$ x = \ pm a_1 \ pm a_2 \ pm \ dots \ dots \ pm a_n $,以便从精确的意义上接近高斯。
Let $\left\{a_1, \dots, a_n\right\} \subset \mathbb{N}$ be a set of positive integers, $a_n$ denoting the largest element, so that for any two of the $2^n$ subsets the sum of all elements is distinct. Erdős asked whether this implies $a_n \geq c \cdot 2^n$ for some universal $c>0$. We prove, slightly extending a result of Elkies, that for any $a_1, \dots, a_n \in \mathbb{R}_{>0}$ $$ \int_{\mathbb{R}} \left( \frac{\sin{ x}}{ x} \right)^2 \prod_{i=1}^{n} \cos{( a_i x)^2} dx \geq \fracπ{2^{n}}$$ with equality if and only if all subset sums are $1-$separated. This leads to a new proof of the currently best lower bound $a_n \geq \sqrt{2/πn} \cdot 2^n$. The main new insight is that having distinct subset sums and $a_n$ small requires the random variable $X = \pm a_1 \pm a_2 \pm \dots \pm a_n$ to be close to Gaussian in a precise sense.