论文标题
增强的Pauli自旋响应,Stoner \&Spin波动模型的失败以及Ni Metal中的6 $ EV $等离子体激发的存在
Enhanced Pauli spin response, failure of Stoner \& spin fluctuation models, and presence of 6 $eV$ plasmonic excitations in Ni metal
论文作者
论文摘要
我们使用密度函数理论(DFT)和动态平均场理论(DMFT)对Ni的电子结构进行了重新审视其电子结构特性的理论描述以及有限的温度磁性。我们的研究提供了具有相同库仑交互参数的电子和磁性特性的全面说明,$ u $($ j $)= 5.78(1.1)$ ev $使用第一原则方法计算得出。从DFT \&DFT+DMFT获得的理论磁化曲线的性质以及实验曲线与磁性标准模型,$ viz $ stoner和自旋波动模型的偏差。发现与温度相关的DFT方法可以很好地描述低于临界温度($ t $ \ $ \ leq $ 631 K)的Ni的有限温度m(t)。该研究发现Pauli-Spin的明显敏感性对顺磁性自旋敏感性有贡献。不包括Pauli-spin响应会产生较高温度下反磁敏感性的线性居里 - 韦斯依赖性。此外,注意到混合价电子配置的存在(3 $ d^8 $,3 $ d^9 $和3 $ d^7 $)。发现3 $ d $状态的巡回和本地瞬间图片的竞争程度决定了系统的有限温度磁化。此外,发现准粒子散射速率与温度的$ t^2 $行为表现出很强的偏差,从而导致传统的费米 - 液体理论破裂。除了6 $ eV $功能外,我们计算出的电子激发光谱证实了卫星功能扩展了$ \ sim $ 10 $ ev $ binding Energy,与实验观察一致。 有趣的是,我们的$ g_0w_0 $结果找到了血浆激发对著名的6 $ eV $卫星强度以及电子相关效果的贡献的存在,这是其重新解释的铺平方法。
We revisit the electronic structure of Ni, using the density functional theory (DFT) and dynamical mean-field theory (DMFT) for the theoretical description of its electronic structure properties along with finite-temperature magnetism. Our study provides a comprehensive account of electronic and magnetic properties with the same set of Coulomb interaction parameters, $U$($J$)=5.78(1.1) $eV$ calculated using first-principles approach. The nature of theoretical magnetization curves obtained from DFT \& DFT+DMFT as well as the experimental curve show deviation from the standard models of magnetism, $viz$ Stoner and spin fluctuation model. The temperature dependent DFT approach is found to well describe the finite-temperature M(T) of Ni below critical temperature ($T$ $\leq$ 631 K). The study finds significant Pauli-spin susceptibility contribution to paramagnetic spin susceptibility. Excluding the Pauli-spin response yields a linear Curie-Weiss dependence of the inverse paramagnetic susceptibility at higher temperatures. Also, the presence of mixed valence electronic configuration (3$d^8$, 3$d^9$ and 3$d^7$) is noted. The competing degrees of both the itinerant and localized moment picture of 3$d$ states are found to dictate the finite-temperature magnetization of the system. Furthermore, the quasiparticle scattering rate is found to exhibit strong deviation from $T^2$ behavior in temperature leading to the breakdown of conventional Fermi-liquid theory. In addition to the 6 $eV$ feature, our calculated electronic excitation spectrum confirms the satellite feature extending $\sim$10 $eV$ binding energy, being consistent with experimental observation. Interestingly, our $G_0W_0$ results find the presence of plasmonic excitation contribution to the intensity of famous 6 $eV$ satellite along with the electronic correlation effects,paving way for its reinterpretation.