论文标题

Fabry-Perot共振缝隙中电磁场的Lorentz-Invariant拓扑结构

Lorentz-invariant topological structures of the electromagnetic field in a Fabry-Perot resonant slit-grating

论文作者

Yakovleva, Marina, Pelouard, Jean-Luc, Pardo, Fabrice

论文摘要

通常认为,电磁世界最正确的描述是抽象的,而拓扑结构(例如力线)不是协变量的。在本文中,我们表明,对于具有$ p $偏振电磁场的$ y $ invariant系统,可以构建绝对(即洛伦兹不变)线,我们称之为电动意大利面(ESS)。电磁场通过超越时空之间的限制的ES拓扑充分描述,再加上新的不变性参数$η$。在Fabry -Perot共振缝隙中,可以区分三个ES模式,对应于三个区域:飞机波区域中的空直线,在光栅内部的干扰区域中的圆形菱形,以及Bernoulli的对数螺旋模式 - 有史以来第一个描述的分离剂 - 在娱乐区中。

It is commonly assumed that the most correct description of the electromagnetic world is the abstract one, and that topological constructs such as lines of force are not covariant. In the present paper, we show that for a $y$-invariant system with a $p$-polarized electromagnetic field, it is possible to construct absolute (i.e. Lorentz invariant) lines, which we call electric spaghettis (ESs). The electromagnetic field is fully described by the ES topology that transcend the limit between space and time, plus a new invariant, the characteristic parameter $η$. In a Fabry-Perot resonant slit-grating, three ES patterns can be distinguished, corresponding to three regions: null straight lines in plane wave regions, rounded rhombuses in the interference region inside the grating, and Bernoulli's logarithmic spiral patterns - the first ever described fractals - in the funneling region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源