论文标题
通过离子溶液和离子通道蛋白的电荷扩展Goldman-Hodgkin-Katz方程
An Extension of Goldman-Hodgkin-Katz Equations by Charges from Ionic Solution and Ion Channel Protein
论文作者
论文摘要
高盛 - 霍奇金 - 卡兹(GHK)方程已广泛应用于离子通道研究,模拟和模型发展。但是,它们是在恒定的电场下构造的,导致它们在离子通量,电流和膜电位的预测中的近似程度较低。在本文中,将方程式从恒定电场扩展到由离子溶液和离子通道蛋白电荷引起的非线性电场。此外,开发了一种新型的数值正交方案,以估计一个主要参数,称为扩展GHK方程的一个主要参数,该参数根据一组静电势值。为此,扩展的GHK方程成为“宏观”离子通道动力学与跨细胞膜的“微观”静电值之间的桥梁。为了生成一组所需的静电势值,开发并将其作为Python软件软件包而开发并实现了一个非线性有限元迭代方案,用于求解一维Poisson-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-Nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-nernst-planck ion通道模型。然后,该软件包用于对扩展GHK方程,数值正交方案和非线性迭代方案进行数值研究。数值结果证实了在离子通量计算中考虑电荷效应的重要性。他们还验证了数值正交方案的高数值准确性,非线性迭代方案的快速收敛速率以及软件包的高性能。
The Goldman-Hodgkin-Katz (GHK) equations have been widely applied to ion channel studies, simulations, and model developments. However, they are constructed under a constant electric field, causing them to have a low degree of approximation in the prediction of ionic fluxes, electric currents, and membrane potentials. In this paper, the equations are extended from the constant electric field to the nonlinear electric field induced by charges from an ionic solution and an ion channel protein. Furthermore, a novel numerical quadrature scheme is developed to estimate one major parameter, called the extension parameter, of the extended GHK equations in terms of a set of electrostatic potential values. To this end, the extended GHK equations become a bridge between the "macroscopic" ion channel kinetics and the "microscopic" electrostatic potential values across a cell membrane. To generate a set of required electrostatic potential values, a nonlinear finite element iterative scheme for solving a one-dimensional Poisson-Nernst-Planck ion channel model is developed and implemented as a Python software package. This package is then used to do numerical studies on the extended GHK equations, the numerical quadrature scheme, and the nonlinear iterative scheme. Numerical results confirm the importance of considering charge effects in the calculation of ionic fluxes. They also validate the high numerical accuracy of the numerical quadrature scheme, the fast convergence rate of the nonlinear iterative scheme, and the high performance of the software package.