论文标题
地球轨道Lorentz Nilmanifolds的结构
The Structure of Geodesic Orbit Lorentz Nilmanifolds
论文作者
论文摘要
地球轨道特性在Riemannian几何形状中很有用且有趣。它意味着同质性,并具有重要类别的Riemannian流形作为特殊情况。这些类别包括弱对称的riemannian歧管和自然还原性的riemannian歧管。不确定的度量歧管的相应结果比里曼尼亚语的标志更精致,但是在过去的几年中,重要的相应结构结果证明了地球轨道洛伦兹歧管的相应结构结果。在这里,我们迈出了大地轨道Lorentz Nilmanifolds结构分析的重要一步。这些是地球轨道Lorentz歧管$ M = g/h $,因此$ g $的nilpotent Analytic子组在$ M $上是传递的。假设有一个还原分解$ \ mathfrak {g} = \ mathfrak {h} \ oplus \ mathfrak {n} $(vector Space Direct sum),带有$ \ mathfrak {n} $ nilpotent。当$ [\ mathfrak {n},\ mathfrak {n}] $上的度量不重新等级时,我们表明$ \ \ m athfrak {n} $是Abelian或2步nilpotent(这与Geodesic Orbit Riemannian riemannian nilmanifolds相同,并且是相同的结果) $ [\ mathfrak {n},\ Mathfrak {n}] $我们表明$ \ mathfrak {n} $是与地理轨道riemantianian nilmanifold相对应的lorentz double Extension。在后一种情况下,我们构建了示例,以表明尼尔疗法步骤的数量是无限的。
The geodesic orbit property is useful and interesting in Riemannian geometry. It implies homogeneity and has important classes of Riemannian manifolds as special cases. Those classes include weakly symmetric Riemannian manifolds and naturally reductive Riemannian manifolds. The corresponding results for indefinite metric manifolds are much more delicate than in Riemannian signature, but in the last few years important corresponding structural results were proved for geodesic orbit Lorentz manifolds. Here we carry out a major step in the structural analysis of geodesic orbit Lorentz nilmanifolds. Those are the geodesic orbit Lorentz manifolds $M = G/H$ such that a nilpotent analytic subgroup of $G$ is transitive on $M$. Suppose that there is a reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{n}$ (vector space direct sum) with $\mathfrak{n}$ nilpotent. When the metric is nondegenerate on $[\mathfrak{n},\mathfrak{n}]$ we show that $\mathfrak{n}$ is abelian or 2-step nilpotent (this is the same result as for geodesic orbit Riemannian nilmanifolds), and when the metric is degenerate on $[\mathfrak{n},\mathfrak{n}]$ we show that $\mathfrak{n}$ is a Lorentz double extension corresponding to a geodesic orbit Riemannian nilmanifold. In the latter case we construct examples to show that the number of nilpotency steps is unbounded.