论文标题
多域学习用于更新面部反欺骗模型
Multi-domain Learning for Updating Face Anti-spoofing Models
论文作者
论文摘要
在这项工作中,我们研究了针对面部抗旋转(MD-FAS)的多域学习,其中需要更新预训练的FAS模型才能在源和目标域上同样出色,而仅使用目标域数据进行更新。我们为MD-FAS提供了一个新的模型,该模型在学习新域数据时解决了遗忘问题,同时拥有高水平的适应性。首先,我们设计了一个简单而有效的模块,称为Spoof区域估计器(SRE),以识别欺骗图像中的欺骗痕迹。这种欺骗痕迹反映了源预先训练的模型的响应,该响应有助于升级模型在更新过程中打击灾难性遗忘。与先前的作品估计欺骗跟踪产生多个输出或低分辨率二进制掩码的工作不同,SRE以无监督的方式产生一个单一的,详细的像素估计值。其次,我们提出了一个名为FAS-Wrapper的新型框架,该框架从预先训练的模型中转移知识,并与不同的FAS模型无缝集成。最后,为了帮助社区进一步推进MD-FAS,我们基于SIW,SIW-MV2和Oulu-NPU构建了一个新的基准测试,并介绍了四个不同的评估协议,其中源和目标域在欺骗类型,年龄,种族和照明方面都是不同的。我们所提出的方法在MD-FAS基准上的性能高于以前的方法。我们的代码和新策划的SIW-MV2公开可用。
In this work, we study multi-domain learning for face anti-spoofing(MD-FAS), where a pre-trained FAS model needs to be updated to perform equally well on both source and target domains while only using target domain data for updating. We present a new model for MD-FAS, which addresses the forgetting issue when learning new domain data, while possessing a high level of adaptability. First, we devise a simple yet effective module, called spoof region estimator(SRE), to identify spoof traces in the spoof image. Such spoof traces reflect the source pre-trained model's responses that help upgraded models combat catastrophic forgetting during updating. Unlike prior works that estimate spoof traces which generate multiple outputs or a low-resolution binary mask, SRE produces one single, detailed pixel-wise estimate in an unsupervised manner. Secondly, we propose a novel framework, named FAS-wrapper, which transfers knowledge from the pre-trained models and seamlessly integrates with different FAS models. Lastly, to help the community further advance MD-FAS, we construct a new benchmark based on SIW, SIW-Mv2 and Oulu-NPU, and introduce four distinct protocols for evaluation, where source and target domains are different in terms of spoof type, age, ethnicity, and illumination. Our proposed method achieves superior performance on the MD-FAS benchmark than previous methods. Our code and newly curated SIW-Mv2 are publicly available.