论文标题

圆形神经元网络夹带的限制

Limits of Entrainment of Circadian Neuronal Networks

论文作者

Psarellis, Yorgos M., Kavousanakis, Michail, Henson, Michael A., Kevrekidis, Ioannis G.

论文摘要

昼夜节律是哺乳动物(例如睡眠,代谢,稳态,情绪变化等)各种重要生理和行为过程的中心。已经表明,这种节奏来自位于上核(SCN)的神经元网络的自我维持的生物分子振荡。在正常情况下,由于视网膜的信号,该网络仍然同步到昼夜周期。这些神经元振荡与外部光信号的未对准会破坏众多的生理功能,并对健康和福祉造成持久的损失。在这项工作中,我们研究了现代的计算神经科学模型,以确定昼夜节律对不同频率和占空比外部光信号的限制。我们采用无基质方法来定位各种驾驶条件的高维模型的周期性稳态。我们的算法管道可以实现分叉图的数值延续和构建W.R.T.强制参数。我们在计算中探讨了昼夜节律网络中异质性的影响,以及矫正治疗干预措施(例如药物分子longdaysin的效果)。最后,我们采用无监督的学习来构建数据驱动的嵌入空间来表示神经元异质性。

Circadian rhythmicity lies at the center of various important physiological and behavioral processes in mammals, such as sleep, metabolism, homeostasis, mood changes and more. It has been shown that this rhythm arises from self-sustained biomolecular oscillations of a neuronal network located in the Suprachiasmatic Nucleus (SCN). Under normal circumstances, this network remains synchronized to the day-night cycle due to signaling from the retina. Misalignment of these neuronal oscillations with the external light signal can disrupt numerous physiological functions and take a long-lasting toll on health and well-being. In this work, we study a modern computational neuroscience model to determine the limits of circadian synchronization to external light signals of different frequency and duty cycle. We employ a matrix-free approach to locate periodic steady states of the high-dimensional model for various driving conditions. Our algorithmic pipeline enables numerical continuation and construction of bifurcation diagrams w.r.t. forcing parameters. We computationally explore the effect of heterogeneity in the circadian neuronal network, as well as the effect of corrective therapeutic interventions, such as that of the drug molecule Longdaysin. Lastly, we employ unsupervised learning to construct a data-driven embedding space for representing neuronal heterogeneity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源