论文标题
一般符号组中具有大图的Galois表示形式
Galois representations with big image in the general symplectic group $\operatorname{GSp}_4(\mathbb{Z}_p)$
论文作者
论文摘要
令$ p $是一个奇怪的素数,$ e_p $是其不规则指数。如果$ 4e_p+8 <\ frac {p-1} {2} $,我们在对角曲线中构造了一个带有图像的galois表示,$ \ op {gsp} _4(\ fp)$将其升级到特征$ 0 $ 0 $代表的特点$ \ ell \ ell \ ell neq p $的特征$ 0 $ intime $ n in Indite in Indite in Indite in Indite in Indite。
Let $p$ be an odd prime and $e_p$ be its irregularity index. If $4e_p+8 <\frac{p-1}{2}$ we construct a Galois representation with image in the diagonal torus of $\op{GSp}_4(\Fp)$ that lifts to a characteristic $0$ representation unramified at all primes $\ell\neq p$ with image containing a finite index subgroup of $\Symp$.